
ULRICH FRANK THE MEMO META-METAMODEL

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 9

Juni 1998

ULRICH FRANK THE MEMO META-METAMODEL

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 9

Juni 1998

Die Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik dienen der Darstellung vorläufiger Ergebnisse,
die i.d.R. noch für spätere Veröffentlichungen überar-
beitet werden. Die Autoren sind deshalb für kritische
Hinweise dankbar.

Alle Rechte vorbehalten. Insbesondere die der Über-
setzung, des Nachdruckes, des Vortrags, der Entnah-
me von Abbildungen und Tabellen - auch bei nur
auszugsweiser Verwertung.

The "Arbeitsberichte des Instituts für Wirtschaftsin-
formatik" comprise preliminary results which will
usually be revised for subsequent publications. Criti-
cal comments would be appreciated by the authors.

All rights reserved. No part of this report may be re-
produced by any means, or translated.

Arbeitsberichte des Instituts für
Wirtschaftsinformatik
Herausgegeben von / Edited by:

Prof. Dr. Ulrich Frank
Prof. Dr. J. Felix Hampe

Bezugsquelle / Source of Supply:

Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
56075 Koblenz

Tel.: 0261-9119-480
Fax: 0261-9119-487
Email: iwi@uni-koblenz.de
WWW: http://www.uni-koblenz.de/~iwi

Anschrift des Verfassers/
Address of the author:

Prof. Dr. Ulrich Frank
Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
D-56075 Koblenz

©IWI 1998

4

Abstract

"Multi Perspective Enterprise Modelling" (MEMO) is a method to support the development of
enterprise models. It suggests a number of abstractions which allow to analyse and design var-
ious interrelated aspects like corporate strategy, business processes, organizational structure
and information models. Any of those views can be modelled with a specific modelling lan-
guage or diagram technique respectively. In order to allow for a tight integration of the various
perspectives, the modelling languages suggested by MEMO are based on common concepts.
Those concepts are defined using a common meta level language. It serves to specify more spe-
cialized languages, such as the MEMO Object Modelling Language (MEMO-OML) or the
MEMO Organisation Modelling Language (MEMO-OrgML). The meta level language itself
is defined within a meta-metamodel. Based on a discussion of the purpose to be fulfilled by a
meta-metamodel and a comparison with other meta-metamodels, this report provides a semi-
formal specification of the semantics, the abstract syntax and the notation (or concrete syntax)
of the MEMO meta-metamodel.

5

1. Introduction

MEMO ("Multi Perspective Enterprise Modelling") is a method that supports the design of
multi perspective enterprise models. The models that cover a particular perspective on an en-
terprise are designed to support specific tasks related to the planning, developing and introduc-
ing corporate information systems. There are, for instance, models of the corporate strategy,
the business processes, the organisation structure, or the information objects. The subjects of
these models are interdependent. Therefore, the models should be highly integrated in order to
allow for synergy. For instance: A model of a business process will often include descriptions
of information that is required or produced within the process. In this case, it can be a good
idea to refer to corresponding parts of an object model. On the other hand, every partial model
is related to specific tasks - like analyzing and (re-) designing a company’s organisation or de-
veloping software to be used within its information system. Therefore, a particular kind of
model requires specific abstractions and concepts. In order to accomplish both goals - the need
for integration and for specialised concepts, MEMO provides a set of specialised modelling
languages. They can be compared to specialised terminologies, like the terminology of soft-
ware-engineers, of management consultants, etc. The various modelling languages provided
by MEMO (for an overview see [Fra97]) are integrated via common concepts which are de-
fined in a common metalevel language.

2. The MEMO Meta-Metamodel

There are different ways do define a language, like grammars or metamodels. Both can be in-
troduced with more or less formal rigour. While a grammar provides advantages for languages
with sequential representations, it is less intuitive to apply for languages with graph-oriented
representations. Furthermore, using a grammar would also result in a paradigm clash since de-
scriptions on other levels within the MEMO framework are represented by (graphical) models.
Therefore, we introduce a model to define the metalanguage that is used for the specification
of the MEMO modelling languages. Since the use of the term "meta" depends on the context,
it can be misleading. In order to avoid confusion, we will use the term meta-metamodel for the
model that describes the metalevel language which is used in turn to define the metamodels
that specify the modelling languages.

2.1 Purpose of a Meta-Metamodel

Introducing a meta-metamodel is motivated by various reasons. They are all based on the as-
sumption that a meta-metamodel can be restricted to a small set of core concepts which are sta-
ble over time. In this case, a meta-metamodel facilitates the exchange of object models which
may be instantiated from different metamodels - provided those are instances of a common me-
ta-metamodel: It allows to map instances of corresponding concepts from one metamodel to
another - which, however, does not guarantee to avoid the loss of semantics. In case a model-
ling method includes various modelling languages/diagram techniques which supplement each
other, a common meta-metamodel helps to integrate different diagrams in a coherent way. The
existence of a meta-metamodel also fosters the extensibility of a modelling language: The met-
amodel can be modified without changing the existing foundation. Additionally a meta-meta-
model helps with understanding a metamodel since it identifies the - usually small number - of
core concepts.

Fig. 1 gives an impression of the hierarchy of models used within MEMO. Notice that the met-

6

amodels (like the MEMO-OML metamodel) are not intended to be an object model for a
CASE tool. Instead, our emphasis is on the specification of a modelling language that can be
used without a tool. In order to allow for a tool supported development and maintenance, the
metamodels will be reconstructed by object models.

Similar to any other model, a the definition of meta-metamodel requires a set of higher order
concepts - we could also speak of a meta-meta-metalanguage. In order to avoid a regressum
ad infinitum, the concepts used for a language specification can be formalized at some point.
That would require to define a set of symbols, a precise syntax and a calculus that would allow
to generate all valid expressions (models). Another option to avoid an infinite series of meta-
level descriptions is to use concepts with well known semantics - with an acceptable amount
of ambiguity.

The meta-metamodel is defined using a small number of well known concepts. The concepts

Fig. 1: Meta-Metamodel for Modelling Languages and its Relationship to Object
Models for Tools

MEMO meta-metamodel

various metamodels for
special purpose model-
ling languages

representing and en-
hancing the meta-
models with object
models using MEMO-
OML

integrating partial mod-
els into a common ob-
ject model for a tool
(MEMO Center)

various diagrams/
views for tool users

instance of

represents

integrates

view on in-
stance of

Organisational Structure

MEMO-OML

Business ProcessValue Chain

MEMO-PML MEMO-...

7

used to constitute the metamodel can be regarded as meta entity types - or within the scope of
the meta-metamodel - as entity types. An entity type may have a set of attributes. An attribute
is specified by one of two base types: Integer, String. Their instances are positive integers and
zero, and strings. As a default, an attribute has the multiplicity 1,1. Attributes typed in italic
have the multiplicity 0,1. At this point, MetaName and MetaID can be considered as String.
They are only used to provide a higher level of abstraction which will facilitate future refine-
ments. Furthermore, concepts of the meta-metamodel are defined via specialisation and asso-
ciations.

An association between two concepts indicates that their instances must or may refer to one
another. For each concept it is assigned a multiplicity, differentiated in minimum and maxi-
mum cardinality. A specialized entity type inherits all the attributes and associated entities
from the superordinate entity type. Notice that specialisation is restricted to single inheritance.
That implies that for the specification of the metamodels instantiated from the MEMO meta-
metamodel only single inheritance is available. However, that does not exclude the definition
of multiple inheritance to be used on the object level. All entity types are specialized from
MetaObject (see fig. 2). MetaObject’s sole attribute, notation, serves to specify how an in-
stance of a concrete subconcept is to be rendered. While this representation can be defined in
various ways, we assume at this point that there is a textual definition (which might be used to
refer to a different format). In a similar way, the attribute "naming" within MetaConcept allows
to specify naming conventions for the instances of its instances (for example: for naming at-
tributes within an object model).

MetaEntity is the only concept within the meta-metamodel that allows for being specialized.
Each instance of MetaEntity has to be assigned a name which must be unique within a meta-
model. MetaAssociation serves to specify associations between instances of MetaEntity. Dif-
ferent from the object level, we do not differentiate between various kinds of associations (like
interaction, aggregation). MetaConstraint can be associated with either instances of MetaEn-
tity, MetaAssociation or with an instance of MetaModel. MetaComment allows to annotate any
element of a metamodel (including instances of MetaComment) as well as the metamodel it-
self. MetaObject, MetaElement and MetaConcept are considered as abstract entity types. Since
a graphical representation is not sufficient to express the essential semantics of the meta-met-
amodel, it is supplemented by a number of natural language constraints. As soon as the meta-
metamodel seems to be mature enough, we will provide a formal specification.

The notation used to render the meta-metamodel corresponds to common conventions. A class
is rendered as a rectangle filled with the name of the class and, if applicable, the names of at-
tributes. Generalisation/specialisation is rendered as an arrow, leading from a class to its su-
perclass (within the meta-metamodel we use single inheritance only). Relationships are ren-
dered as thinner arrows which carry cardinalities and a designator to be read in the direction
defined by the arrow. Abstract classes are characterized by a filled triangle in the upper left
corner of the corresponding rectangle.

8

associated via

1,1 0,*

0,* 0,*

specialised from

0,10,*

MetaConstraint
expression: MetaExpression

identifier: MetaID

restricts composed of

0,*0,1

restricts
0,*

0,1

Fig. 2: The MEMO-OML Meta-Metamodel

0,*

MetaObject

notation: String

MetaModel

name: MetaName
version: String

annotates

0,*

MetaEntity

name: MetaName
isAbstract: Boolean

MetaConcept

naming: String

MetaElement MetaExpression MetaName

MetaComment

text: String

Specialisations must
not be cyclic.

1,1 1,1

MetaAssociation
Link

designator: MetaName

A MetaAttributeAssocia-
tionLink must not be associa-
ted with itself or another Me-
taAttributeAssociationLink.
The MetaMultiplicity assigned
to the MetaAssociationLink a
MetaAttributeAssociationLink
is associated with, must have
both its attributes, minCard
and maxCard, set to 1.

MetaAttribute
AssociationLink

MetaMultiplicity

minCard: Integer
maxCard: Integer

assigned to

0,1 1,1

related to

minCard >= 0
maxCard >= minCard

Constraint

Constraint
Constraint

9

2.2 Additional Constraints

A metamodel as an instance of the meta-metamodel serves to render the semantics and abstract
syntax of a modelling language in an illustrative way. There are, however, limits to the expres-
sive power of pure graphical models. In order to fill the semantic gaps left by the graphical
representation of the metamodel, an additional specification language is required - which
would be used to form expressions as instances of MetaExpression. The UML proposition cur-
rently under review by the OMG ([Rat97a], [Rat97b]) includes a formal specification language
that has been developed by IBM. The Object Constraint Language (OCL, [Rat97d]) is based
on a syntax which is very similar to Smalltalk. Different from Smalltalk, however, OCL uses
statically typed classes (entities) only. GRAL (Graphical Specification Language, [EbWi96],
[Frz97]) is another option.

From both options we favour GRAL - mainly for three reasons: GRAL is based on a solid for-
mal foundation that resulted from intensive research. There is a Meta CASE tool that allows
to instantiate specific CASE tools from metamodels specified in GRAL ([EbSü97]). Finally,
GRAL was developed at Koblenz university within a team we cooperate with closely. GRAL
allows to specify constraints on so called TGraphs. A TGraph is a directed graph composed of
vertices and edges. Both, vertices and edges, are typed and may have attributes. GRAL comes
with a library of predicates typically needed to express properties of graphs (e.g.: "isAcyclic
(G)", "isNeighbourOf (G,v,w)"). Additional predicates can be defined using the specification
language Z. In order to specify first order predicates on TGraphs (and/or vertices and edges) it
is required to navigate the graph on any path that might be of relevance for a particular con-
straint. The edges used within an expression are identified by the vertices they connect and
their designator(s). For a detailed specification of TGraphs see [EbFr95].

Since we do not expect the version of the meta-metamodel presented in this paper to be the
final one, we will use natural language expressions to describe additional constraints.

2.3 Notation of the Metamodelling Language

The notation used for designing metamodels is much like the one already used for the meta-
metamodel, except for a few additional symbols. In order to give a more precise, though not
intended to be formal, specification of the notation, we will differentiate between the graphical
representation and the textual designators/annotations. For the latter we use a Backus-Naur
form. The bold faced non-terminal symbols are used within the graphical illustration of the no-
tation (see fig. 3). Notice that we do not bother with specifying a few basic non-terminal sym-
bols - like String, LowercaseLetter, UppercaseLetter, LineFeed etc. An expression that satis-
fies the syntactic rules imposed by the OCL is represented by the symbol OCLExpression,
while GRALExpression represents propositions in GRAL.

Basic Symbols

<digit> ::= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<positiveInteger> ::= {< digit >}

<infiniteNumber> ::= ’*’

<separator> ::= ’, ’

<lowerString> ::= <LowercaseLetter> <String>

<upperString> ::= <UppercaseLetter> <String>

10

Multiplicity

<maxCardinality> ::= <PositiveInteger> | <infiniteNumber>

<minCardinality> ::= <PositiveInteger>

<multiplicity> ::= <minCardinality> separator <maxCardinality>

MetaEntity

<entityName> ::= <upperString>

Attribute

<attributeName> ::= <lowerString>

Constraint

<constraintkey> ::= ’C’ <number>

<MetaExpression> ::= <OCLExpression> | <GRALExpression> | <String>

Association

<backwardArrow> ::= ’ ’

<forwardArrow> ::= ’ ’

<designator> ::= <lowerString>

<backwardDesignator> ::= <backwardArrow> <designator>

<forwardDesignator> ::= <designator> <forwardArrow>

<forwardFirst> ::= <forwardDesignator> [< LineFeed> <backwardDesignator>]

<backwardFirst> ::= <backwardDesignator> [< LineFeed> <forwardDesignator>]

<assocDesignator> ::= forwardFirst | backwardFirst

From an abtract point of view, the graphical notation of the language defined within the meta-
metamodel can be regarded as a graph consisting of vertices which are connected by edges.
The vertices represent instances of MetaEntity. They are rendered as rectangles. Abstract in-
stances of MetaEntity are rendered by a filled triangle in the upper left corner of the rectangle.
Sometimes it is required to use an instance of an instance of MetaEntity within a metamodel.
Such an instance can be rendered by a double line rectangle. Generalisation is rendered by a
line with an arrow at that end that connects to the generalized instance of MetaEntity. Associ-
ations are rendered as non directed lines. In case an associated entity is meant to be an attribute,
the letter "A" has to placed at the end of the line that connects to that entity. Both, for general-
isations and associations lines with different shapes are possible: Any line should be composed
of a number of straight lines connecting exactly two rectangles. The lines representing associ-
ations or attributes may carry a designator (assocDesignator, attributeName). It is recommend-
ed to print the designator in parallel to the corresponding line, with the arrow indicating the
direction in which the designator ought to be read. However, it may be inconvenient, if not im-
possible, to follow this recommendation. Therefore, alternative ways to attach a designator to
a line are possible (see fig. 4). The same rule applies to multiplicities: They should, but do not
have to be printed in parallel to a line representing an association or attribute. While it is rec-
ommended to print a designator above a line, multiplicities should be printed below a line.

The text that represents a constraint has to be placed in a rectangle that has an optinional iden-
tifier at the upper left corner. This identifier is used to link the constraint to the corresponding
part of the model. The rectangles that contain comments may also be carry an identifier. As an
alternative, a comment can also be assigned to a part of a model by using a dotted line.

11

Fig. 3: Notation of MEMO Metalanguages (1): Basic Symbols

instance of MetaEntity

generalisation
instance of "is subclass

of"-association

association
(two linked instances of
MetaAssociationLink)

abstract instance of MetaEntity<entityName>

instance of an instance of MetaEntity
(not permitted for abstract instances)

<entityName>

<entityName>

[<assocDesignator>]

<multiplicity><multiplicity>

attribute
(an instance of MetaAttribu-
teAssociationLink linked with
an instance of MetaAssocia-

tionLink)

<attributeName>
A

<multiplicity>•A

constraint
(instance of MetaConstraint, n

serves as a reference)

As specified in the meta-meta-
model, n is a positive integer
and has to be a unique key
within a model

comment
(instance of MetaComment)

C ##

<MetaExpression>

<String>

<constraintKey>

C ##

12

generalisation
In principle, generalisation
can be represented by any
line with an arrow that points
to the general entity.

association
The rule that applies for the rep-
resentation of associations is
similar to that for generalisation:
In principle, any line that con-
nects two entities is suitable. It
is recommended, but not man-
datory, to render the designa-
tors and multiplicities in parallel
to a line.

comment
As an option, a comment can
be assigned to a specific part
of a model by a dotted line.<String>

[<
as

so
cD

es
ig

na
to

r>
]

<multiplicity>

<multiplicity>

[<designator>]

[<
fo

rw
ar

dA
rr

ow
>

]

<
m

ul
tip

lic
ity

>
<

m
ul

tip
lic

ity
>

Fig. 4: Notation of MEMO Metalanguages (2): Additional Symbols and
Illustration of Alternative Representations

[<ass
ocD

esig
nator>

]

<multip
lic

ity
>

<multip
lic

ity
>

13

3. Relationship to other Meta-Metamodels

As already mentioned above, a meta-metamodel fosters the integration of different metamod-
els which are instantiated from it. For this reason, it is a good idea to limit the number of meta-
metamodels. At present time, two meta-metamodels have gained an outstanding popularity in
the area of object-oriented modelling languages. The first one is the meta-metamodel designed
for the CASE Date Interchange Format (CDIF), defined by the CDIF division within the Elec-
tronic Industries Association (EIA, ([Ern97]). It is the purpose of CDIF to support the ex-
change of models managed by CASE tools. Although the CDIF meta-metamodel and the met-
amodels instantiated from it seem to be rather elaborated, we do not think CDIF offers a satis-
factory level of abstraction - like it is appropriate for the specification of an object-oriented
modelling language.

For instance: At first sight, the CDIF meta-metamodel does not include an entity like "Con-
straint" or "Comment". They are, however, included, as "MetaAttribute" ("Constraints", "De-
scription") of "MetaObject" ([Pla97], pp. 27) - both specified by a data type. "MetaAttribute"
which is used to instantiate attributes on the metalevel is also restricted to represent instances
of "DataType" ([Pla97], p. 32), instead for allowing a higher level of abstraction as it would be
offered by the notion of class. Furthermore, CDIF is clearly focusing on tool interoperability.
For this reason, the CDIF metamodels include information that is typically required for the

Fig. 5: The CDIF Meta-Metamodel - adapted by Platinum. The original version uses the
designator "MetaEntity" instead of "MetaClass" ([Pla97], p. 23).

14

management of models within a tool, like "DateCreated", "DateUpdated", "TimeCreated", etc.
([Pla97], p. 52). Although these concepts are not reflected directly in the meta-metamodel, it
has to be taken into account that the abstractions suggested by CDIF are based on a scope
which is different from the pure definition of modelling languages.

The meta-metamodel of the UML ([Rat97a], see fig. 6) is obviously stressing a more object-
oriented view than the one that comes with CDIF. For instance: Attributes may be specified by
a class (or a data type as well). Nevertheless, we do not think that this meta-metamodel is sat-
isfactory either.

Apart from the fact that [Rat97d] does not answer the question what it means exactly to apply
a constraint to a constraint, concepts like "MetaOperation" and "MetaParameter" do not seem
to be appropriate in a meta-metamodel of a modelling language. There is no doubt that con-
cepts like operation and parameter are needed for object-oriented modelling languages. At that
level of abstraction, they serve to describe object models which are eventually mapped to cor-
responding concepts of an object-oriented implementation language. On the implementation
level, you will finally see objects which offer services that are executed by a machine. How-
ever, using operations in a language specification - i.e. within a metamodel - is misleading. It
implies that the use of a language requires a machine - otherwise operations do not make much
sense. Notice that operations may be very helpful whenever a model is managed by a tool. But
that is a different context which should be clearly differentiated from metamodels of a lan-
guage. We prefer the following view: Modelling languages should be described within meta-
models that do not include any behaviour. On the other hand, it is a good idea to reconstruct
and enhance a language description with an object model for a tool which is used to manage
object models (see fig. 8).

While, for the reasons explained above, we decided to introduce a meta-metamodel especially
for MEMO, it is certainly not completely different from existing ones. Although there are se-
mantic differences, its concepts can be mapped to those of the UML and the CFIF meta-met-

Fig. 6: The UML Meta-Metamodel ([Rat97a], p. 10)

15

amodels in a rather straightforward way. The following table shows how the concepts used
within the three meta-metamodels correspond to each other. For a comparison of the UML me-
ta-metamodel and the CDIF meta-metamodel see [Rat97c].

MEMO Meta-Metamodel UML Meta-Metamodel CDIF Meta-Metamodel

MetaObject MetaObject MetaObject

notation not explicitely included; could
be represented by an attribute
of type MetaString on
MetaObject

not explicitely included; could
be represented by a meta-
meta-attribute of type Meta-
String on MetaObject

MetaModel MetaModel SubjectArea

MetaEntity MetaType AttributableMetaObject

MetaEntity MetaClass MetaEntity

MetaEntity MetaDataType meta-meta-attribute Data
Type on MetaAttribute

MetaAssociationLink MetaAssociation MetaRelationship

< out of scope >; could be
added using instance of Meta-

Comment

MetaRole < out of scope >

MetaAssociationLink MetaAssociation + MetaRole
with isAggregate = true Meta-
Aggregation MetaRelati-
onship

MetaRelationship

MetaAssociationLink MetaAssociation + MetaRole
with isAggregate = true
isChangeable = false source
= 0..1 MetaComposition Meta-
Relationship

MetaRelationship

no corresponding abstraction MetaMember no corresponding abstraction

MetaAttributeAssociationLink MetaAttribute MetaAttribute

< out of scope > MetaOperation < out of scope >

< out of scope > MetaParameter < out of scope >

MetaConstraint MetaConstraint meta-meta-attribute
Constraints on MetaObject

MetaComment not explicitely included; could
be represented by an attribute
of type MetaString

meta-meta-attribute
Description on MetaObject

< out of scope > MetaDataType meta-meta-attribute Data-
Type on MetaAttribute

Boolean MetaBoolean DataType = Boolean

< out of scope > MetaEnumeration DataType = Enumerated

16

4. Relationship to Metamodels within MEMO

The MEMO meta-metamodel can be instantiated in various ways. Each instance is a metamod-
el which serves to specify a specific modelling language. Fig. 7 illustrates the different levels
of abstraction: Refering to two MEMO modelling languages, the MEMO Object Modelling
Language (MEMO-OML) and the MEMO Organisation Modelling Language (MEMO
OrgML), it shows examples of concepts used on the various levels of abstraction between a
real world domain and the meta-metamodel.

MetaExpression MetaExpression DataType = Text

MetaMultiplicity MetaMultiplicity DataType = String

MetaName MetaName DataType = Identifier

Integer MetaNumber DataType = Float
DataType = Integer

< out of scope > MetaPoint DataType = Point

String MetaString DataType = String

< out of scope > MetaTime DataType = Time
DataType = Date

< out of scope > MetaUninterpreted DataType = Text

17

It is an essential goal of MEMO to allow for a tight integration of various models of an enter-
prise. Integration of different models is accomplished through common concepts. From our

Fig. 7: Levels of Abstraction

MEMO Meta-Metamodel

Defines concepts for specifying
modelling languages.

MEMO-OML Metamodel

Defines the concepts that
constitute the MEMO-OML.

Objectmodel

Describes information
within an application do-
main using MEMO-OML.

Application Domain

Example Elements

MetaConcept, MetaEntity,
MetaConstraint ...

Example Concepts

Class, Attribute, Service ...

Examples Concepts

Person, dateOfBirth: Date,
age (aDate): anInteger

Example Instances

"Jim Smith", "10/23/55" ...
"John Miller, "09/03/69" ...
...

in
st

an
ce

 o
f

in
st

an
ce

 o
f

ab
st

ra
ct

io
n

of

Example Concepts

"Marketing Department",
"CEO", "Claim processing", ...

Example Concepts

Process, Activity, Ressource,
OrganisationalUnit ...

Organisation Model

Describes a firm’s or-
ganisation (structure
and processes).

MEMO-OrgML
Metamodel

Defines the concepts
that constitute the
MEMO-OrgML.

Customer

to
Supplier

Product
contains

specifies

1,10,*

Order

Object

Example Instances

Current Instance of Market-
ing Department, "Michael
Smith", Instance of Claim
Processing started at 10:15
am, June 1998

co
rr

es
po

nd
s

to
 p

ar
ts

 o
f

co
rr

es
po

nd
s

to
 p

ar
ts

 o
f

in
st

an
ce

 o
f

ab
st

ra
ct

io
n

of

in
st

an
ce

 o
f

18

point of view, the level of integration increases with the level of semantics incorporated in
those concepts. On a low level of integration, common concepts would be general basic types,
like Byte, Character or Integer. MEMO fosters a higher level of integration: The various met-
amodels of different modelling languages share common concepts. Fig. 8 gives an example of
this kind of integration.

The excerpts of the MEMO-OML metamodel shown in fig. 9 and 10 illustrate how to use the
concepts defined in the meta-metamodel for the specification of a modelling language.

ProcessType

Primary
Activity

BasicService

Context
Class

Class

Resource
Consumption0,* 1,*

requiresrefers to

specifies
im

pl
em

en
te

d
by

0,
*

0,
*

0,* 1,*

0,* 0,*

uses

0,1 0,1

re
pr

es
en

ts

0,
*

1,
1

ResourceType

Strategic
Resource

co
rr

es
po

nd
s

to

0,
*

0,
*

MEMO-SMLMEMO-OML

MEMO-OrgML

MEMO-SML MEMO-Strategy Modelling Language

Fig. 8: Integration of Modelling Languages via common Concepts

19

Fig. 9: MEMO-OML metamodel (1): Generalization Hierarchy

Object

Named
Object

Class
Feature

Instance

Multiplicity

Class

Exception

Labeled
Object

ContextRole

Comment

Model
Element

Generic
Class Abstract

Class

ObjectModel

Constraint

Service

Attribute

Trigger

Guard

PartLink

Association
Link

Interaction
Link

Roleholder
Link

RoleLink

Aggregate
Link

Expression

Service
Spec

20

5. Concluding Remarks

The MEMO meta-metamodel presented in this paper provides a semi-formal description of the
concepts that are used to specify various graphical modelling languages within the MEMO
framework. The meta-metamodel itself is specified by a small number of fairly simple con-
cepts. While those concepts are inspired by the ontological notions of entities and associations,
they are not independent from their purpose, namely the specification of specialised modelling
languages. Therefore, further investigations will be necessary to confirm or refine the current
meta-metamodel. We expect this to be a process with multiple levels of feedback: The ongoing
specification of modelling languages will show whether or not the concepts provided by the
meta-metamodel are sufficient. Applying the modelling languages for describing real world
domains will help to find out whether the concepts on this level are sufficient and appropriate.
At this stage, we do not regard it as necessary to formalize the meta-metamodel. However, we
plan to specify a formal foundation of the meta-metamodel in order to improve the means to
check the consistency of metamodels.

Association
LinkGenericClass

Multiplicity

role

A
number

ContextRole serves
as an annotation
only. It does not in-
clude any formal
semantics.

1,1 0,*

Labeled
Object

NameA
label

The label of an instance
of LabeledObject does
not have to be unique
within any scope.

Specialisation

ContextRole

A

Specialisation BooleanA
multiplicity

BooleanA
class

The value of the class attribute
has to be the same as the value
of the class attribute of the asso-
ciated AssociationLink.

A

1,1

0,1

1,1

1,1

1,1

0,1

linked via

Fig. 10: MEMO-OML metamodel (2): Basic concepts to describe associations

C 02

C 01

C 01

C 02 Multiplicity may only be true if
maxCard - minCard > 0.

21

References

[EbFr95] Ebert, J.; Franzke, A.: A Declarative Approach to Graph Based Modeling. In:
Mayr, E.; Schmidt, G.; Tinhofer, G. (Eds.): Graphtheoretic Concepts in Computer
Science. Berlin, Heidelberg etc.: Springer (LNCS 903) 1995, pp. 38-50

[EbSü97] Ebert, J.; Süttenbach, R.; Uhe, I.: Meta-CASE in Practice: a Case for KOGGE. In
Olive, A., Pastor, J. A. (Eds.): Advanced Information Systems Engineering, Pro-
ceedings of the 9th International Conference, CAiSE'97. Berlin, Heidelberg etc.:
Springer (LNCS 1250) 1997, pp. 203-216

[EbWi96] Ebert, J; Winter, A; Dahm, P.: Graph Based Modelling and Implementation with
EER/GRAL. Fachberichte Informatik, Universität Koblenz-Landau, Heft 11,
1996

[Ern97] Ernst, J.: Introduction to CDIF. 1997 (http://www.cdif.org/)

[Fra97] Frank, U.: Enriching Object-Oriented Methods with Domain Specific Knowledge:
Outline of a Method for Enterprise Modelling. Arbeitsberichte des Instituts fuer
Wirtschaftsinformatik, Nr. 4, Koblenz 1997

[Frz97] Franzke, A.: GRAL 2.0: A Reference Manual. Fachberichte Informatik, Universi-
tät Koblenz-Landau, 1997

[Pla97] Platinum: Object Analysis and Design Facility Response to OMG/OA&D RFP-1.
(http://www.omg.org/library/schedule/AD_RFP1.html)

[Rat97a] Rational: UML-Semantics. Version 1.1. 09/01/1997 (http://www.rational.com)

[Rat97b] Rational: UML-Notation Guide. Version 01.09/01/1997 (http://www.rational.com)

[Rat97c] Rational: Appendix M3: UML Meta-Metamodel Alignment with MOF and CDIF.
Vers. 1.0, 13 January 1997 (http://www.rational.com)

[Rat97d] Rational: OCL. Version 1.1. 09/01/1997 (http://www.rational.com)

