
Integration – Reflections on a Pivotal Concept
for Designing and Evaluating Information

Systems

Ulrich Frank

University of Duisburg-Essen, 45141 Essen, Germany
ulrich.frank@uni-duisburg-essen.de,

WWW home page: http://www.wi-inf.uni-duisburg-essen.de/FGFrank/

Abstract. Integration is one of the pivotal concepts with respect to an-
alyzing, designing and evaluating information systems. Integrating soft-
ware components as well as integrating information systems with the sur-
rounding action system is a core activity of most software development
projects. Despite the outstanding importance of integration in Informa-
tion Systems, only little work has been done on developing a conception
of integration. This paper presents a conception of integration that can
be applied to information systems as well as to their integration with the
action systems they are supposed to support. It allows for differentiating
degrees of integration. It also accounts for additional levels of integration,
such as meta level or instance level integration

Key words: coupling, integration, IT business alignment, redundancy,
reusability, semantics

1 Introduction

The benefits of integration are probably part of every curriculum in Information
Systems and Computer Science. Integration helps to avoid redundancy, hence,
contributes to integrity. It is also regarded as an effective means to accelerate
business processes and to support decision making. Catering for integration is
a pivotal objective during the development of information systems. On the one
hand, it suggests designing a common conceptual foundation, e. g. an object
model, for the applications or components to be integrated. On the other hand,
it recommends the use of system components that are dedicated to integration,
such as Database Management Systems, so called Middleware, Workflow Man-
agement Systems etc. In addition to the build-time stage, integration is a major
issue during system maintenance. A plethora of projects is aimed at healing the
problems caused by isolated, heterogeneous software systems. Since these sys-
tems are often still vital for a company’s performance, IT managers tend to avoid
their removal. However, ex post integration faces severe challenges. Numerous
consulting companies and tool vendors have responded to this demand by of-
fering methods and systems, referred to as Enterprise Application Integration,
Data Warehouse Systems, Middleware etc.



112 Ulrich Frank

While suprisingly little publications are available that target integration explic-
itly – two of the rare examples are (cf. [3], [1]) – numerous research activities
are aimed at fostering both, ex ante and ex post integration of information sys-
tems. Research on conceptual modeling targets the development of modeling
languages and methods that allow for developing a common conceptual foun-
dation for integrating the components of an information system. Research on
ontologies is intended to support the development of integrated information sys-
tems, too (“ontology-driven development”, (cf. [4]). Ontologies are also suggested
for re-engineering purposes in order to integrate heterogeneous applications (cf.
[2]; [4]). Federated databases are a further research field that is focused on ex
post integration.
In contrast to the vast amount of research that is focused on the integration of
information systems, it is surprising that there is hardly any publication avail-
able that is aimed at developing a conception of integration. This may be con-
tributed to the fact that integration is regarded as a core term, which does not
need further explanation. However, such an implicit notion of integrity is not
sufficient for designing or evaluating information systems. Therefore, I will at-
tempt to develop a conception of integration that should serve this purpose. It
is rather a reconstruction of the actual use of the term than a proposal for an
entirely new concept. In the first part of the study, a preliminary concept serves
to analyze various aspects of integration and related benefits. Subsequently, a
refined concept will be presented, which allows differentiating degrees and levels
of integration.

2 Integration: Aspects and Benefits

The term integration represents both, a process and its result, i. e. a feature
of a system or a set of systems. The focus in this paper is on integration as
a system feature. According to the colloquial meaning of the term, integration
results from constructing a whole from previously isolated parts. However, such
a general conception is not sufficient to account for the peculiarities of informa-
tion systems. Also, the image of hardware parts that can be composed only, if
they have fitting physical shapes, is not appropriate. Information systems are
not physical, but linguistic artifacts. Integrating two linguistic artifacts requires
that they are able to communicate – either directly or through some kind of
mediator. In other words: If two components of a system are not able to com-
municate, they are not integrated. Note, that I use the term ’component’ as
an abstraction of software artifacts such as applications, modules, or compo-
nents in a more specific sense. Communicating means exchanging data, e. g. by
sending messages or by using shared memory. However, catering for data ex-
change only is not sufficient: Communication can work only, if both components
share a common interpretation of the data. Otherwise, communication would
be a threat to efficiency and to system integrity. Against this background, we
can outline a first draft of what we mean by integration: Two components of
an information system are integrated, if they can communicate. If they have the



Integration 113

ability to communicate but do not make use of it, they are potentially integrated.

2.1 Dimensions of Integration

To cope with the complexity of large systems during systems analysis and design,
it is common to make use of abstractions that focus on particular aspects only.
Static or data abstractions, captured typically through data models, reduce a
system to a description of its data structures. Functional abstractions focus on
the functions, a system is supposed to perform. Data flow diagrams would be an
example of a functional abstraction. Finally, dynamic abstractions represent the
control flow within the processes of a system. They could be realized through
state charts or – on a higher level of abstraction – through business process
models. Object-oriented abstractions can be regarded as a composition of static
and functional abstractions. These three essential abstractions of information
systems can be used for illustrating different dimensions of integration.

Static Integration
Our preliminary concept of integration can be applied directly to this dimen-
sion. Two components of an information system are statically integrated, if they
can exchange data – either directly or through a mediator. For this purpose,
statically integrated components need to share common concepts that specify
the semantics of the exchanged data, e. g. common data types, classes or other
data structures. Apparently, static integration allows for sharing data and – as
a consequence – for avoiding data redundancy. However, static integration does
not imply data sharing. It only requires common concepts that define the se-
mantics of the exchanged data. If, for instance, two components exchange data,
they may do this only once in a while and still manage their own – redundant
– data in the meantime. In this case, however, there would be a better chance
to protect data integrity, e. g. through some kind of synchronisation protocol,
because both components would share the same meaning of duplicate data. If
two applications have access to common data but do not make use of it, they
would be regarded as potentially integrated. The benefits of static integration
are obvious. Firstly, there is no need for hazardous and expensive interpreta-
tions of data that origin from other components. Secondly, if data are shared
by both components, there is no need for updating different copies. Apparently,
both aspects contribute to the integrity and efficiency of an information system.
Note that the proposed concept of integration requires at least one integrated
component to write data that is being used by the other components. Hence,
applications that have read-access only to some common resource files provided
by the operating system are integrated with the operating system, but not be-
tween themselves. Also, a so called data warehouse does not contribute to the
integration of legacy applications, since the database that is aggregated from
operational level data, is usually not being used by operational level systems.
The operational level systems do not share the schema of the data warehouse.
Nevertheless, a data warehouse creates the impression of integrated data for



114 Ulrich Frank

those tools that use it. We could call it virtual integration.

Functional Integration
Communication that is restricted to somehow exchanging shared data does not
allow for directly addressing another component of the system. This is different
with functional integration. Two components of an information system are func-
tionally integrated if they communicate through calling functions. This requires
them sharing the meaning of those functions. At the same time, it requires them
to be statically integrated. Only then can they use the data that is required or
delivered by the functions that were called. Functional integration allows the
participating components to share the functions they have in common. There-
fore it contributes to avoiding redundant functions, which in turn facilitates
system maintenance. In order to reduce the number of communication chan-
nels, a central mediator can be deployed. It can either dispatch function calls
to a prospective receiver or to a central function library. Note, however, that
functional integration is not accomplished, if two components use a common
library without exchanging data. If the functions allow for write-access, it will
at least be a case of potential integration. While functional integration implies
static integration, data integration will often depend on functional integration
as well: If, e. g. two components communicate through a common file system
or a common DBMS, they both need to share the required access functions. A
specific asset of functional integration is the ability to establish data exchange
between components that do not share the same data representation – but only
the same interfaces. This allows for leaving existing data structures unchanged,
which is a specific benefit for achieving ex-post integration. There is, however,
a severe downside to this approach: integration of this kind does not cater for
avoiding data redundancy – a problem that is often ignored by proponents of
service-oriented architectures. Hence, functional integration can contribute to
“covering the mess” instead of removing it.

Dynamic Integration
Functional integration allows two components to cooperate in the sense that they
mutually use/provide services. However, it is not sufficient for the integrated
components to jointly execute a certain process. This is subject of dynamic in-
tegration. It requires a common collaboration or process schema, which includes
common event types. Furthermore, it implies functional integration. A process
schema defines a process e. g. through event-action-rules: If a certain event is
generated by one of the integrated components, it will trigger the appropriate
component to execute a certain function. Such a decentralized execution plan
requires all the integrated components to have access to the common process
schema – and to identify the components that are in charge of executing a par-
ticular function. Taking into account that a component may participate in more
than one process schema, this approach will often imply a remarkable effort for
the specification and implementation of the components. It corresponds to the
coordination of autonomous software artifacts (“agents”) according to a com-



Integration 115

mon plan. To avoid this effort, integration of the components can be relaxed
by deploying a central coordinator. Relevant events generated within a compo-
nent would then have to correspond to common event types defined in a central
schema. In addition to that, the components would have to be functionally in-
tegrated.

Organizational Integration
Orthogonal to the dimensions discussed above, there is a further dimension of
integration that is of particular relevance for Information Systems: The efficient
use of information systems requires them to be integrated with the organiza-
tional action systems they are supposed to support. This dimension has gained
remarkable attention both in business practice and academia, often referred to
as “IT-Business-Alignment”. To define a conception of organizational integra-
tion, we build on the previous definitions: An information system and the actions
system it is supposed to support are integrated, if they are able to communi-
cate. This requires common or better: corresponding concepts, since the spec-
ification of concepts in information systems is different from natural language
terms. If, for instance, a database schema includes the concept of a “Prelimi-
naryInvoice”, integration suggests that this is an established term of the action
system as well. Otherwise users cannot use this component of the system prop-
erly. Organizational integration can be differentiated into static, functional and
dynamic. Static refers to communication that is based on common static con-
cepts, such as the above example. Functional integration refers to the concepts
that specify functions which correspond to functions or tasks within the action
system. Finally, dynamic integration is aimed at coordinating functions provided
by the information system and human actions according to a process schema.
It requires events generated within an information system that correspond to
concepts, users are familiar with. On the other hand, events within the action
system that are relevant for the information system should also correspond to a
common concepts. There are different approaches to accomplish organizational
integration. Firstly, the concepts of an information system can be adapted to the
concepts used in the action system. In this case, requirements analysis is aimed
at identifying the terminology of the intended application domain in order to
map it to corresponding concepts for designing the information system. Note
that ’terminology’ refers mainly to concepts, not to their designation. Secondly,
the prospective users can adapt to the information system’s concepts. This does
not only require learning the concepts but also mapping them to existing ter-
minology and – eventually – adapt the existing terminology and corresponding
patterns of action. Thirdly, there is the option of mutual adaptation, which will
often be a convincing choice: With respect to user acceptance, it is not a good
idea to ignore existing terminology and established patterns of action. At the
same time, both existing terminology and established patterns of action are of-
ten insufficient with respect to actual and future business requirements. Hence,
organizational integration does not only require analyzing existing domains and
their prevalent language. Instead, it suggests (re-) designing new action systems



116 Ulrich Frank

and reconstructing existing terminologies that are in line with corresponding in-
formation systems – thus contributing to the evolution of new language games.

3 A Refined Conception of Integration

While our first conception of integration includes the distinction of various di-
mensions, it does not allow for differentiating different qualities or intensities of
integration. Therefore, I will suggest a refinement of the concept that accounts
for different degrees and levels of integration.

3.1 Degrees of Integration

In general, integration requires common concepts that provide a foundation for
communication. However, with respect to facilitating communication not any
common concept is of equal value. For communication to be efficient and con-
sistent, common concepts should allow for specifying the exchanged data in a
way that minimizes information loss. In other words: The amount of seman-
tics, a common concept includes, should not be lower than that of any of the
corresponding concepts in the components to be integrated. Note that this use
of the term “semantics” corresponds to information content: The more possi-
ble interpretations are excluded by the specification of a concept, the higher its
semantics. This allows for refining the concept of integration to express differ-
ent degrees of integration: The higher the amount of semantics incorporated in
common concepts used by a set of integrated components, the higher the degree
of integration of these components. If, for instance, two components exchange
bytes, the extent of possible interpretations is apparently larger than for the
exchange of data, which are defined as floating point numbers. Referring to a
concept such as “Customer” or “Invoice” would promote an even higher degree
of (static) integration. This concept can be applied to all dimensions of integra-
tion. The semantics of a function is more difficult to describe than that of data.
On the one hand, it depends on the semantics of its interface: A function that is
passed a number is less specific – hence allows for more interpretations – than a
function that is passed a more complex structure. Also, additional constraints,
e. g. expressed through pre- or postconditions, increase a function’s semantics.
The degree of dynamic integration depends on the semantics of event action
rules that define coordination. The semantics of event-action-rules depends on
the semantics of the involved event types and the semantics of the functions
that represent the actions. An event type such as “file was modified” allows for
more interpretations than “product database was updated” or even “price of
product x was changed”. Fig. 1 illustrates various degrees of integration in all
three dimensions.

The refined concept of integration can also be applied to organizational inte-
gration. If, for instance, customer information is stored in text files using a text



Integration 117

Byte

Real
WP-File

Customer

Invoice

Component A Component B

Granted order 
volume exceeded

New Order 
created

Key 
pressed

salesForecast 
(r: Region)

Open (p: Pipe)

Sort (v (real)

Address file 
modified

D
eg

re
e 

of
 In

te
gr

at
io

n

Event Type

Function Type

Data Type/Class

message

Fig. 1. Degrees of Integration

processor, the level of organizational integration is low: the common semantics
of ”Customer” is reduced to a string. If an accounting system features a concept
of ”Account” that directly corresponds to the use of the term in the intended
application domain, the degree of integration would be higher – in other words:
the chance for communication failures would be less. If an ERP system includes
an elaborate concept of ”OrderProcessing” that is not known in its application
domain, the level of integration would – at first – be low, too. Only, if system in-
troduction and training resulted in successful adoption of the concepts suggested
by the ERP system, integration could be accomplished. The higher the degree of
organizational integration, the better is the chance to avoid friction between hu-
man action systems and the supporting information system, in other words: the
better is the alignment of business and IT. Apparently, there is a difference be-
tween the dimensions of system integration and organizational integration: Due
to the interpretative flexibility and the learning capabilities of human users, a
perfect fit is not necessary. Due to the interpersonal diversity of meaning, it
would not be detectable either. While the refined concept of integration allows
for gradually differentiating degrees of integration with respect to certain con-
cepts, it does not allow for specifying the degree of an entire information system.
If two information systems have only one highly specialized concept in common,
would they feature a higher degree of integration than two other system that
share a number of concepts with less semantics? Against this background, it
might be tempting to define a formal concept of integration that would allow
for calculating corresponding metrics, e. g. the average or total degree of inte-
gration of an entire information system. However, while such an approach might
be regarded as satisfactory by some, it is likely to produce distortion. The no-
tion of semantics we use is not a pure formal one. For instance: With respect to
formal semantics, there is no difference between typing an attribute ”name” as
String and typing an attribute ”revenue” as String. However, accounting for the



118 Ulrich Frank

meaning, we contribute to the term ”revenue”, it would clearly indicate a poor
degree of integration, if two components used String as a common concept.

3.2 Levels of Integration

So far, our focus was on concepts that are required to facilitate integration. In-
tegration, however, can also be related to the instance level – and to meta levels
as well.

Instance Level Integration
Communication requires common concepts. The concepts can be refered to us-
ing a common namespace, e. g. the types of an IDL. This allows for assigning
semantics to instance level data that is exchanged between the components of
an information system. However, for communication on the instance level to
be efficient, refering to corresponding concepts alone is not sufficient. A uni-
fied identification, hence a common namespace, would not only help reducing
communication load – it would be sufficient to exchange identifiers only – it
would also allow for differentiating between instances. For this reason, it makes
sense to expand the previous notion of integration by accounting explicitly for
the instance level: Two components are integrated on the instance level, if they
share a common namespace to identify instances. Integrating instances implies
conceptual integration, i. e. common concepts to specify the semantics of the in-
stances. Instance level integration through common namespaces is an important
feature of so called middleware or DBMS. These technologies allow for identi-
fying data objects accross the boundaries of specific namespaces maintained by
separate components. Apparently, this corresponds to static integration. Inte-
grating function instances is a different issue. At first, it is not as obvious what a
function instance is: Is it a particular implementation, a particular implementa-
tion within a particular context or a particular execution? There may be many
instantiations of a particular implementation. Therefore, regarding a particu-
lar implementation as an instance, makes sense only for functions that provide
stateless services. A service offered by an object is a prototypical example of
a particular implementation within a particular context. The identification of
such a function requires the identification of the corresponding object. Hence,
instance level integration of functions is an issue only in those cases, where the
static context is relevant; in other words: instance level integration of functions
implies static integration of those elements that constitute the relevant context.
Core concepts required for dynamic integration are events, functions and cor-
responding execution rules. Particular events are generated e. g. through the
instantiation of data or objects, their deletion or state changes. If, in a coopera-
tion scenario, e. g. a workflow, the coordination of two components demands for
taking into account particular events, there is need for dynamic integration on
the instance level. If, for instance, in a workflow management scenario, an incom-
ing order is represented through an object, changes that apply to this particular
object – e. g. representing the approval of the order – are relevant particular
events. In order to accomplish this kind of integration – either in a decentralized



Integration 119

cooperation scenario or through some kind of mediator – it is required to define
a namespace for event instances that allow for idendifying events throughout
the entire workflow (and maybe within an even wider context). The benefits of
instance integration are obvious: It is the precondition for avoiding redundancy
and for different components working jointly on common concepts. Achieving in-
stance level integration can require a remarkable effort. Not only that it requires
to maintain a common namespace, which covers distributed components. It also
requires appropriate instruments for instance lifecycle management. In the case
of static integration, this includes assigning a common name (identifier), when an
object is instantiated and ensuring referential integrity when it is removed. This
is similar for function instances: new instances need to be registered and assigned
an identifier. In case, a function instance is removed, referential integrity is an
issue, too. In the case of dynamic integration, instance life cycle management is
even more demanding. There is, e. g. need for a protocol that defines, when an
event is regarded as consumed, hence, needs to be removed from the common
event space. To summarize, instance level integration faces two main problems:
consistently identifying and managing instances accross the set of components
that are to be integrated. The safest approach to consistent identification and
naming is the use of unambiguous identifiers for the real world entities to be
represented in a system. If every relevant object carried its identification – like
the identification number in a passport or a number used to identify a specific
instance of a product type – there would be no longer the need to care for consis-
tently assigning identifiers to instances in information systems. If these objects
would also carry the definition of their type, assigning real world objects to rep-
resentations within information systems would be even more efficient and safe.
In the long run, this may even result in overcoming the distinction between a real
world object and its representation within an information system: Every object
could carry a representation of itself, together with a unique identifier. Given
the standards, bandwiths and affordability required to realize such a vision, a
tremendous impact on the economics of logistics processes can be expected.
Meta-Level Integration
If – in human communication – we use terms other participants do not know,
we can still explain these terms using other, common terms. The effort such an
explanation takes depends on the available common language. If, for instance,
the concept ”Interface” as it it used in the UML needs to be described, it will
be much easier, if one can refer to the technical terminology of software engi-
neering than to colloquial language only. A similar approach to communication
is possible in information systems, too. For example, the concept of an ”Inter-
face” is specified through a meta model. Components that are able to interpret
the concepts of the corresponding meta model, could infer the semantics of the
concept, even if it not part of a schema they have access to. However, the UML
meta model is hardly sufficient to specify the semantics of particular classes,
e. g. of a class ”Product”. The meta level concepts would only specify that it
is a class with certain features. A further example would be an XML document
representing an invoice that is transmitted together with its DTD. While the



120 Ulrich Frank

receiving component – if it includes an adequate interpretation of XML docu-
ments – would be able to identify that the document is a valid XML document,
it could not infer that the DTD describes the concept ”Product”. If one used a
more specific language on the meta level, there would be the chance to describe
concepts more specifically, leaving less room for interpretations. For instance: A
formal ”Business Language” could include a meta concept such as ”Product”,
which would capture the essence of all product types within a certain range.
As a consequence, every component that has a reference to this meta concept
could infer that all instances of this meta concept represent product types. For
a comprehensive example and its application to prevalent architectures see ([5]).
Note that in addition to common meta level concepts there would be need for
unified designators – which might be multilingual.

4 Challenges

The obvious advantages of integration are constrasted by reservation. On the one
hand, warning voices can be heard from those who are in charge of managing
IT. They doubt the economic benefits of integration. On the other hand, there
are software engineers who advocate a more relaxed concept of integration in
order to better cope with the demand for flexibility.

4.1 Complexity and Risk

Designing and implementing information systems that feature a high degree of
integration is certainly more demanding than building isolated systems with a
more modest degree of integration: It is not sufficient to strive for abstractions
that fit a particular application. Instead, abstractions should result in concepts
that fit a whole range of applications. In order not to jeopardize the integrity of
the system during its lifecycle, abstractions should be resistant against changing
requirements. With the number of components to be integrated the likelihood
that abstractions fail in this respect is growing. Ex post integration is even more
challenging, since it requires touching legacy systems. Demanding a high degree
of integration in this case requires modifying existing, often insufficiently docu-
mented code. From the perspective of those who are responsible for integration
projects, this is a rather threatening scenario, since numerous sources of hid-
den risks can be expected. While there is not doubt that building integrated
systems is associated with remarkable complexity and risk, that does not neces-
sarily discredit the striving for a high degree of integration. One should take into
account that reducing complexity usually requires increasing it first. Building,
e. g., a DBMS is certainly a complex endeavour. If it was successful, however,
it contributes to a remarkable decrease of complexity – and effort – for those
who build applications. Therefore, from an economic point of view, the addi-
tional effort for realizing a higher degree of integration should be related to the
corresponding benefits. This will certainly require a thorough evaluation, e. g.



Integration 121

by analyzing the effect of integration on current and future business processes.
There is, however, no doubt that especially cross-organizational integration is
facing a paradox situation: On the one hand, it offers exciting economic per-
spectives. On the other hand, the incentives for pioneering actors to invest into
cross-organizational integration are often not sufficient.

4.2 Integration versus Loose Coupling

In recent years, loosely coupled systems seem to be the name of the game in
software development. However, coupling is not a well defined term. On the one
hand, it refers somehow to the principle of information hiding: Two components
are loosely coupled, if their mutual dependance is restricted to a well-defined in-
terface. Hence, the internal representations of the components are not affected.
On the other hand, coupling refers to the specifity – or semantics – of these
interfaces. If a component’s interface is specified on a low level of semantics, it
is more likely to find further components that can be coupled to it. Hence, loose
coupling suggests to use interfaces only to integrate systems and to avoid a high
degree of integration. At first sight, such a recommendation may seem useful.
However, it has clear shortcomings. Firstly, integrating two components through
concepts with little semantics is a clear threat to system integrity. Secondly,
reducing integration to interfaces, i. e. abstracting from the internal representa-
tions of the involved components, leaves an extremely relevant issue open: data
redundancy. Note that this is different with information hiding in object-oriented
software development: Each object is thought to represent a unique real world
entity. Therefore, the data represented in objects should not be redundant.
Apparently, there is a tradeoff between the benefits of integration and the threats
of dependance. Deciding for the right balance in a particular case recommends
taking into account two aspects. Firstly, one should analyse whether the essence
of the concepts used to accomplish a higher degree of integration is the same
for all participating components. If this is the case, the changing requirements
related to some components would not affect the common concepts. In other
words: One should put emphasis on the quality of the abstractions used to ac-
complish integration. Secondly, one should not neglect the concepts used in other
systems that one might want to integrate in future times. While both aspects
create a remarkable challenge, it is not a good idea to sacrifice the benefits of
integration for the supposed sake of loose coupling without further consideration.

5 Concluding Remarks

When it comes to designing and evaluating information systems, integration is
a pivotal term. This recommends a thorough conceptualisation and assessment.
The ideas presented in this paper are preliminary only. They leave many ques-
tions open. Also, a concept that is based on ”semantics” adopts some of the



122 Ulrich Frank

unsolved mystery that is still encompassing this term. Currently, integration
is an ambivalent concept. Its clear benefits are contrasted by threats. This is
similar to reusability, which marks the other side of the same coin: The more
semantics a reusable artifact incorporates, the larger its benefit in a certain reuse
case, the higher, however, the likelihood that is does not fit a particular context.
Unfortunately, it is not possible to overcome this conflict through invidual ac-
tion. There is, however, a promising approach to developing a solution to this
unsatisfactory situation: The creation of reference models (cf. [7]; [6]) that serve
as blueprints for an entire range of information systems. Unfortunately, the de-
velopment and establishment of reference models exceeds the resources available
to single academic institutions by far. Also, it is required to involve prospective
users and vendors in time. Traditional approaches to organizing research on in-
formation systems are not appropriate for that. Instead, there is need for large
communities that bundle their forces not only to develop and evaluate refer-
ence models, but also to promote them. A recent initiative, started by the SIG
MobIS within the German Informatics Society (GI), is aimed at applying the
idea of Open Source Software to the development of open reference models ([8]),
(www.openmodels.org). While it is a demanding process to establish such ini-
tiatives, it seems the only chance to exploit the potentials offered by integration
and reusability.

References

1. Anderson, N. H.: Foundation of information integration theory. Academic Press:
New York 1981

2. Bouras, A.; Gouvas, P.; Kourtesis, D.; Mentzas, G.: Semantic Integration Of Busi-
ness Applications Across Collaborative Value Networks. Springer: Boston 2007

3. Wiederhold, G. (ed.): Intelligent Integration of Information. Kluwer Academic Pub-
lishers: Boston 1996

4. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.):
Formal Ontology in Information Systems. Proceedings of FOIS98, Trento, Italy, 6-8
June 1998. IOS Press: Amsterdam 1998, pp. 3–15

5. Frank, U.: Modeling Products for Versatile E-Commerce Platforms – Essential Re-
quirements and Generic Design Alternatives. In: Arisawa, H., Kambayashi, Y., Ku-
mar, V., Mayr, H. C., Hunt, I. (eds.) Conceptual Modeling for New Information
System Technologies. Springer Berlin et al. 2002, pp. 444–456

6. Frank, U.: Evaluation of Reference Models. In: Fettke, P., Loos, P. (eds.): Reference
Modeling for Business Systems Analysis. Idea Group: Hershey 2006, pp. 118–140

7. Fettke, P., Loos, P.: Classification of reference models - a methodology and its
application. In: Information Systems and e-Business Management, Vol. 1, No. 1,
2003, pp. 35–53

8. Frank, U.; Strecker, S.: Open Reference Models – Community-driven Collaboration
to Promote Development and Dissemination of Reference Models. In: Enterprise
Modelling and Information Systems Architectures. Vol. 2., No. 2, 2007, pp. 32–41


