
Modeling Products for Versatile E-Commerce

Platforms - Essential Requirements and Generic
Design Alternatives

Ulrich Frank

University of Koblenz, Rheinau 1, 56075 Koblenz
ulrich.frank@uni-koblenz.de

Abstract. Electronic commerce (e-commerce) covers a wide range of
business transactions. Usually, a transactions includes products, i.e. goods
or services. Often, e-commerce websites are intended to offer a large vari-
ety of products, most of which are not fully recognized at the time when
the system is constructed. Nevertheless, there is need to describe these
products in an elaborated way in order to support prospective customers
in finding adequate products. Since new product types may have to be
registered on a daily basis, changing a data base schema or program
code is no satisfactory option. Instead there is the need to register new
product types during the run time of a system. In addition, the repre-
sentation of product variants and the construction of individual prod-
uct configurations should be possible. Current approaches to represent
products do not fulfill these requirements to a satisfactory degree. The
design of appropriate conceptual models requires to thoroughly differ-
entiate between various levels of abstraction. This includes decisions to
be made between instantiation, specialization and ”uses” relationships.
Against this background, the paper presents three prototypical design
alternatives for versatile product representations. They vary in terms of
flexibility, reusability and ease of use. The work presented in this paper
resulted from the design of a reference model for e-commerce platforms.

1 Introduction

While electronic data interchange (EDI) is restricted to the transmission of data
within traditional business models, e-commerce allows for entirely new ways of
doing business. Among other things, we witness the rise of new kinds of inter-
mediaries that combine trading and brokerage with purely internet based, non-
personal acquisition and sales, e.g. companies that offer platforms for electronic
auctions or electronic marketplaces in general. We use the term ”e-commerce
platform” as an abstraction of information systems that support this variety
of actual internet businesses. Unlike traditional inventory management, an e-
commerce platform is aimed at covering the initiation and performing of busi-
ness transactions on the Internet between participants that possibly do not know
each other. Companies that run e-commerce platforms face a number of remark-
able challenges, including the development of lasting customer relationships, the

establishment of a competitive profile and becoming well known in relevant mar-
kets with a reasonable advertising budget. Additionally, a pivotal success factor
for e-commerce platforms to perform economically is a powerful software ar-
chitecture. A couple of years ago, a few fancy web pages, and impressive sales
forecasts, were sufficient to qualify as a serious e-commerce contender - no mat-
ter whether there was only a quick and dirty implementation under the hood.
Times have changed. For e-commerce platforms to be enablers of more efficient
business transactions, they have to offer more than allowing customers to submit
orders through web browsers. In general, they should promote the automation
of business processes: even when e-commerce seems to focus at first sight on the
generation of business over the Internet (and to which some current offers ac-
tually limit themselves), economic reasons suggest an integration and extensive
automation of all involved processes, such as procurement, logistics and financial
transactions. Also, an e-commerce platform should allow for representing a wide
range of products. This is due to the fact that the diversity of products offered
over e-commerce websites on the Internet is sometimes considerable; in some
cases - for example in auction platforms – it is almost unlimited. In contrast to
department stores or mail order companies that also often offer a wide array of
products, the range cannot be planned in the medium term. Instead, it must be
possible to make diverse, almost totally unpredictable changes to the product
range on a daily basis; today, leather seats; tomorrow, helicopters. In order to
support a tight integration with other systems in the supply chain, products
must be described meaningfully with regard to corresponding use cases. There-
fore, it is all about conceptualizing objects of which one has, up to that point, no
knowledge. This paper is aimed at conceptual solutions to overcome this seeming
paradox.

2 Requirements and State of the Art Solutions

To solve the problem outlined above, we need appropriate conceptual models of
products. A conceptual product model does not only guide the implementation
of software, it is also a blueprint for the specification of communication inter-
faces. Before we consider current approaches to represent products in information
systems, we will have a more detailed look at the requirements a competitive
e-commerce platform should fulfill.

1. In principle, it should be possible to represent any products (or more exactly:
types of products).

2. The registration of new product types should not require a change of the
program code or of the database schema, because in view of the general
availability of the system and the frequent appearance of new product types
this would not be acceptable.

Other requirements emphasize the customers viewpoint:

3. The objects stored on the basis of conceptual product models should support
the customer when searching for suitable products.

4. With this, the description of products from the point of view of the customers
should have a sufficient content and be fairly set out for all their various
needs in a detailed and clear form. This requires, for instance, that both a
customer searching a particular type of furniture and another one searching
for an excavator should be able to specify relevant features. Common search
engines are usually not satisfactory. They operate on full text representations
that do not include product descriptions as semantic structures. For example,
imagine to search for a dining-table with a glass top and mahogany table-legs.
While it would not be possible to express exactly what you are looking for,
a search engine would retrieve pages that contain both glass and mahogany
tables but maybe none that satisfies the relevant search criteria.

Besides that, there are a series of requirements that are connected to the auto-
mated use and care of product data:

5. The product descriptions should allow for the collection, over a period of
time, of relevant marketing knowledge about the purchasing behavior of
customers. This requires the analysis of buying preferences of customers
- grouped by demographic variables - with respect to specific features of
products.

6. The system should extensively shut out the registration of meaningless prod-
uct descriptions. That implies to define products types that restrict the pos-
sible descriptions of corresponding instances.

The same is valid for the registration of customer orders:

7. It should be possible to represent product variants as such, since in this
way not only can the analysis of purchasing habits mentioned above be
supported, but also redundancy of data registration and use can be avoided:
Features that have been described for a product type already do not have
to be described again when it comes to specify corresponding variants.

8. The customer should be in the position to specify individual configurations,
e.g. by assigning equipment to a car. To avoid orders that cannot be satisfied,
it is essential to allow for correct configurations only.

9. Different forms of pricing and price assigning (for product types and single
products) should be possible.

10. The product descriptions should be versatile enough to satisfy diverse com-
munication interfaces (e.g. to customers, suppliers, banks, and logistical part-
ners).

The representation of products is subject of a number of EDI protocols, such
as UN-EDIFACT. Typically, these protocols are aimed at the specification of
business documents like orders, invoices etc. They do, however, allow for the use
of product identifiers only, thereby relying on the participating parties to share
a common understanding of these identifiers. Current standardization initiatives
that are aimed at fostering e-commerce transactions, like Open Buying on the
Internet [OBI99] or RosettaNet [Rose99], also do without concepts of products.
Instead, the XML document types they define, include tags for product identifiers

only. This is the case, too, for document types that are propagated by companies
which operate marketplaces on the Internet ([Arib00], [Comm00]). Probably the
most common approach to describe product types are data structures that in-
clude features that all product types have in common, like Name, Description,
Price, Picture etc. The differentiation between various product types follows
solely through specific initialization of the generic features. While such flat de-
scriptions are very flexible in the sense that they allow for the representation of
any kind of product without the need for changing code (requirements 1, 2), their
support for searching products is limited to text retrieval (requirements 3, 4).
At the same time, it must be taken into account that a product concept of this
kind does not support the differentiated analysis of consumer behavior, since the
product types that are offered cannot be distinguished conceptually (requirement
5). Requirement 6 marks an inherent weakness of this concept, since in concep-
tual terms almost all nonsensical product descriptions are possible. Therefore it
jeopardizes the integrity of a system. Specifying product variants is not feasi-
ble on a conceptual level since it is not possible to show which characteristics
distinguish one variant from another (requirement 7). For similar reasons it is
not possible to represent product configurations (requirement 8). Information on
pricing and for logistical purposes (requirements 9, 10) could be added. Class
hierarchies, where each class represents a specific product type, would allow for
more elaborate descriptions of product types. For our purpose, however, it is not
satisfactory because the introduction of a new product type would require to de-
fine a new specialized class, hence the modification of code (requirements 1, 2).
There are a few approaches that allow for more meaningful, yet flexible definition
of products. Vendors of e-commerce software, like BEA or Intershop, supplement
flat descriptions of product types with entity types that are in fact meta types.
They allow for the specification of additional attribute types (www.bea.com,
www.intershop.com). BMEcat, an intended XML based standard protocol for
B2B transactions, uses a similar approach ([HRS99], [SKP+01]). While all of
these approaches allow to describe new product types without changing code,
none of them allows for the specification of configurations or variants. Also, their
focus is mainly on the definition of exchange protocols not on providing for a
conceptual foundation of corresponding information systems. Also, none of these
approaches is based on a thorough differentiation of the levels of abstraction to
be taken into account.

3 Levels of Abstraction

To prepare for the representation of products, it is helpful to clarify the levels
of abstraction one has to deal with - and to contrast them with the levels of
abstraction that are available in state of the art software architectures.

3.1 Instantiation, Specialization and Re-use

The definition of new product types requires an appropriate language. In order
to avoid definitions that are not compliant with an acceptable notion of prod-

uct, the ”language” can be restricted to a meta model that defines the set of
all syntactically valid product type definitions. The meta model itself could be
specified using the ER model or the UML. A simple meta model of this kind
could, for instance, consist of two entity types as illustrated in fig. 1. Sometimes,
it will not be satisfactory to define a product type from scratch by instantiating
it from a meta model. Instead, it may be more appealing to specialize it from
an existing product type.

Fig. 1 includes an example of a specialized product type. Notice, that in re-
ality there is no fixed limit to the number of levels. Specialization seems to be
well suited for any kind of is a relationships. However, it recommends a second
thought with respect to the semantics of specialization or inheritance. While
in natural language, there is no unique concept of specialization, one interpre-
tation seems to be prevailing. It is based on an extensional notion of a class,
which defines a class as a set of instances. Hence, a specialized class is a subset
of its superclass. Database theory usually suggests a similar notion of special-
ization. This is, however, different with common object-oriented programming
language that are usually the implementation language of choice. They feature
an intensional notion of a class where a class is defined by a certain structure. A
specialized class inherits this structure. Different from the extensional concept,
an object can be an instance of one and only one class. Applying the intensional
concept to product types reveals yet another challenge. Sometimes, the instances
of a specialized type may have features with the same state as the instances of
the corresponding supertype. Take, for instance, a special edition of a certain
type of TV set. Its features (screen size, weight, etc.) have the same value as
all the other instances of the type it is specialized from. In addition to these,
it includes a computer system that allows for internet access. It is not possi-
ble to express this ”re-use” of state through specialization that is based on an
intensional concept of a class: you would have to instantiate a new instance of
the specialized class without any inherited state (for a detailed discussion see
[Fran00]). In fig. 1, the term cloned is used to denote this kind of relationship.
For many products, there is no need to describe product instances. Sometimes,
however, a customer may want to pick a particular instance. This is especially
the case for used products. When it comes, for example, to consider the price of
a used car, its particular state has to be taken into account. At first sight, this
would suggest to represent particular products as instances of a certain product
type. However, similar to the specialization into limited edition discussed above,
instantiation is not satisfactory. Many of a used cars features will have the same
state as all cars of the corresponding type. Using a class (or a type respectively)
and its instances does not allow to express this information: Firstly, a class does
not allow for storing states that apply to all instances (that would require meta
classes). Secondly, the state of an instantiated object is on a different level of
abstraction than the state of its class.

Meta

Type

Initialized Type

Specialized Type

Particular Product Instance

Level of Abstraction Example

language to define product types

product type

product type with initialized features

product type specialized from
product type

particular instance

Product_Type

name String 1,1 0,*

TV

make ’Sony’
screenSize 50
frequency 100

Cloned Type

 product type ’specialized’ from
initialized product type

TV

make ’Sony’
screenSize 50
frequency 100
model ’S-90’

Internet-TV

make String
screenSize Real
frequency Integer
OS String

TV

make String
screenSize Real
frequency Integer

TV

make ’Sony’ ...
serial ’A-9851k’

Feature_Type

name String
type String

Fig. 1. Levels of abstraction concerning the representation of products

3.2 Layers in Common Software Architectures

So far, we have seen that there are many levels of abstraction that have to be
taken into account with respect to the representation of products. Also, the
relationships between the various levels cannot always be clearly classified as
instantiation or specialization. To make things even worse, we have to consider
the limitations of common software architectures to represent the abstractions
we have identified so far. Usually there are two main levels of abstraction in ad-
dition to the implicit language layer. The ”meta layer” allows for the definition
of concepts such as classes or relation types. The ”object layer” serves to store
the corresponding instances. Avoiding the modification of code for the purpose
of introducing a new product type implies to reserve the meta layer for the def-
inition of a meta model of product types. Product types would then actually be
instances on the object layer. This has two implications. Firstly, there is no way
to directly use specialization relationships between product types because they
can be applied to classes only and not to instances. Secondly, it is not possible to
instantiate objects representing particular product instances from product types
because an instance cannot be instantiated from an instance. Our brief discus-
sion of the abstractions to be taken into account as well as the concepts available
in state of the art software architectures shows that a versatile representation
has to face two essential challenges. On the one hand, it is necessary to clarify
the levels of abstraction and the corresponding levels of re-use (re-use of concept,
re-use of state) that are needed to represent a certain population of products. On

the other hand, these abstractions have to be reconstructed using the restricted
set of concepts provided with common software development environments.

4 Three prototypical Design Alternatives

It would be nice if there was one representation of products that would fulfill all
requirements (see 2) to a satisfactory degree. However, our work on the design
of an object-oriented reference model for e-commerce platforms suggests a dif-
ferentiated approach. Goals like flexibility and re-usability are in part conflicting
and come with additional trade-offs like compromising integrity and ease of (re-)
use. Depending on the products to be represented for an e-commerce platform,
the relevance of these goals varies. Therefore we introduce three prototypical
product models each of which is suited for a set of products that meets certain
conditions. Emphasis on Versatile Definitions of Product Types and Configura-
tions Some product types offered on e-commerce platforms allow for individual
configurations or come in different variants. The object model shown in fig. 2
allows for a fairly flexible specification of configuration options. At the same time
it is limited with respect to the re-use of product types (conceptual re-use) and
instantiated type features (instance level re-use). Hence, it is suited for domains
where similarity of product types is of no concern - because product types do
not have features in common or it would be to expensive to consider similar-
ity when introducing a new product type. To take advantage of the additional
flexibility offered by meta concepts within common architectures, it is neces-
sary to overload layers with more than one abstraction. Some of the concepts
shown in fig. 2 are part of a product meta model (e.g. Standard Feature Type,
Optional Feature Type). Others are directly related to certain product types
(e.g. Feature Value, Configuration Type). As a consequence, the corresponding
instances cover two levels of abstraction, too. This model is valid for all conceiv-
able product types. Product Type serves to represent a particular product type
such as BMW 325 i or IBM Thinkpad T21. To introduce a new product type, an
object of Product Type has to be instantiated first. Then one would assign the
necessary number of feature types either instances of Standard Feature Type
or Optional Feature Type. Features may be available in various form (color,
size, etc.). The range of available feature forms can be specified by assigning
corresponding instances of Feature Value. Associations between feature types
(replaces, requires) allow one to express configuration constraints. All the re-
quirements formulated in section 2 are fulfilled using this approach, whereby
pricing mechanisms are abstracted. However, one must consider that only a part
of all conceivable configuration constraints can be expressed (through the associ-
ation between Optional Feature Type and Feature Type). For instance, it would
not be possible to specify that a sun roof is available only for black cars, because
that would require one to refer to the state of a Feature Value, not just to the
existence of another feature. However, a limitation of this kind is not a serious
drawback in view of the intended scope of application. It would not be eco-
nomic anyway if a trading site reproduces the detailed configuration possibilities

Standard_Feature_Type

allows for include

refers to

specified as

r
e
p
l
a
c
e
s

r
e
q
u
i
r
e
s

0,1

0,1

0,1

0,*

0,*

0,*
1,1

1,1

0,* 1,1

0,*
Product_Variant_Type

Feature_Value

specialized
from

created: Date
specification: XML_String
...

Configuration_Type

Optional_Feature_Type

extra_Charge: Money
extra_Weight: W_Unit
...

Feature_Type

type: String
...

1,1

Abstract_Product

name: String
iD: String
description:String
...

Product_Type

lengthUnit:L_Unit
weightUnit:W_Unit
height: Real
length: Real
...

Fig. 2. Prototypical product model #1

of a complex product (a car, for example) in the same detail as the respective
manufacturer. Therefore, for complex models the model is suited to describe
subsets of all possible configurations. All individual configurations are managed
as instances of Configuration Type, whereby the attribute specification serves
to describe an individual configuration in a suitable language (for example as
an instance of a corresponding XML document type). Figure 3 clarifies this fact
with an example. It represents standard and optional features of a particular sofa
type and thereby expresses the set of possible configurations. In addition to that
it shows an excerpt of a particular configuration that is represented as an XML
string, which would be stored with an instance of the class Configuration Type.
Even when this approach supports a high degree of flexibility and concurrently a
high level of integrity, it also has drawbacks. They are mainly related to the lack
of support for re-usability. On the concept level, it is not possible to express that
a product type is a specialization of an existing type. On the instance level, too,
it may be helpful to re-use existing instances. Take, for example, certain makes
of Feature Type, like a particular car stereo make. While this is an important
part of a product description, it could not be represented in an information sys-
tem that is based on the model in fig. 2. The general feature type car stereo
would be represented by an instance of one of the subclasses of Feature Type.
From a conceptual viewpoint, a particular make would be an instance of this
instance - which is not possible. As an alternative, one could use instances of
Feature Type to represent particular makes. Unfortunately, this approach would
result in a large amount of conceptual redundancy.

Standard_Feature
Type: Colour
Description:

Standard_Feature_Type
Type: cover material
Name : cotton
Description:

Product
Type: Sofa
Name : Milano
Description: ...
Height: 90
Length: 160
Width: 100
LengthUnit:cm

Feature_Value
Name : black
Description:

Optional_Feature_Type
Type: cover material
Name : leather
Description:

Feature_Value
Name : yellow
Description:

<Configuration>
<Product_Type> Sofa </Product_Type>
<Optional_Feature0>

<Type> Cover Material </Type>
<Name> Leather </Name>

<Standard_Feature>
<Type> Colour </Type>

<Feature_Value>
<Name> black </Name>

</Feature_Value>

Fig. 3. Exemplary instancing of the model with corresponding specifications of a par-
ticular configuration using XML

4.1 Emphasis on Re-Use

In cases where the shortcomings of the previous model are not acceptable, the
representation of products should allow for expressing re-usability associations -
both on a conceptual and an instance level. For this purpose, the object model
in fig. 4 introduces additional concepts. They allow to represent product types
as well as feature types on a higher level of abstraction. The model presented in
fig. 4 requires to describe product types on a specific level, e.g. BMW 320i,
BMW 325i etc. This is also the case with feature types, e.g. the particular
make of a car stereo. As outlined in 2, a more abstract representation would
offer better chances for re-use. One would, for instance, introduce a product
type Car which could then be specialized into BMW 3 series and further on
into the concrete product type BMW 325i. The class Concrete Product Type
is intended to represent concrete product types. Similarly, one would represent
feature types on a more abstract level, for instance Car Stereo in general. A par-
ticular make of car stereo could then be instantiated from a corresponding type.
The subclasses of the abstract class Feature serve to represent concrete features.
Since many instances of Concrete Product Type may be assigned to an instance
of Product Type, particular features (instances of Standard Feature and Op-
tional Feature) have to be assigned to an instance of Concrete Product Type.
Unfortunately, the model would still allow to assign features to a product that
are not assigned to feature types of the corresponding product type. Therefore
additional constraints are required (see fig. 4). Notice that there is no need to
link a feature to every feature type. Sometimes, the description of a feature
type will be sufficient. Take, for instance, an air conditioning system in a car.
To support conceptual re-use, the model includes a recursive association with
Product Type that indicates a specialization relationship. At the same time the

description of a concrete feature may require a more elaborate specification. For
instance: the size of wheels. Since the relevant attributes of feature types may
vary, there is need for an additional meta abstraction. It is provided with a
meta attribute, i.e. an attribute that serves to specify a structure. The meta
attribute feature Details is specified by the class Attribute Spec. It contains two
tuples each of which contains the denominator of an object level attribute and
the type of this attribute. The default value of this attribute contains the tuples
(Name, String), (Description, String) and (Photo, String), which can be used
to describe a particular feature (like an alloy wheel) on the object level. Since
the structure of a feature type may vary, it is not possible to specify the struc-
ture of a particular feature in advance. Therefore a particular feature, stored
as an instance of Standard Feature or Optional Feature, is specified as an XML
document within the attribute StrucDesc. The structure of this document is de-
fined with the corresponding instance of a subclass of Feature Type as an XML
document type definition (attribute DTD in fig. 4). Notice that an instance
of Standard Feature Type or of Optional Feature Type may be associated with
many instances of a corresponding subclass of Feature to express that there
are options for specifying individual configurations. A product type consists of

Abstract_Product

name: String
iD: String
description:String
...

Standard_Feature_Type

allows for refers to

r
e
q
u
i
r
e
s

0,1 0,1

0,1

0,*

0,*

0,*

1,1
0,*

1,1 0,1

1,1

0,*
Product_Variant_Type

Feature_Value

created: Date
specification: XML_String
...

Configuration_Type

Concrete_
Product_Type

descript: XML_String
height: Real
length: Real
width: Real

1,1
0,*

Standard_Feature Optional_Feature

extra_Weight: W_Unit
...

s
p
e
c
i
f
i
e
d

a
s

Optional_Feature_Type

r
e
p
l
a
c
e
s

Feature

instance of

instance of

1,1

0,*

0,*

1,1

instance of

i
n
c
l
u
d
e

specialized from

Product_Type

DTD: XML_String
lenght_Unit: Unit
...

0,1

0,*

specialized
from

An instance of Standard_Feature (Optional_Feature) may be
linked to an instance of Standard_Feature_Type
(Optional_Feature_Type) only, if the corresponding
instances of Product_Type and Concrete_Product_Type are
linked, too.

Constraint

Feature_Type

DTD: XML_String
feature_Details: Attribute_Spec

descript: XML_String

Fig. 4. Prototypical product model #2

feature types. With the specific structure of a feature type being defined in a
corresponding DTD, the overall structure of a product type can be expressed
as a DTD, too. It is composed of the DTDs of the associated feature types. A
concrete product type, instance of Concrete Product Type, is then described by

a number of general attributes, like Width, Height etc. and an XML string that
contains a description of all features that are available with this concrete prod-
uct type. Similar to the previous models, a particular configuration would be
specified by an XML string that specifies all selected features of a correspond-
ing concrete product type. Notice that we do not allow for the specialization
of feature types, because this could result in the notorious covariance problem
([Meye97], pp. 621). This model fosters a higher level of re-use than the previ-
ous one. Nevertheless, it comes with two disadvantages. The first one is related
to its complexity that is a threat to a systems integrity for two reasons. The
implementation of additional contraints increases the chance of software bugs.
At the same time, using it in appropriately demands abstraction skills that may
possibly not be expected of system users. While some of this complexity may be
hidden from users, the second disadvantage is to accept only, if the similar prod-
uct types share the same standard and optional features. Otherwise, it is not
possible to take advantage of the specialization association. Cars, for instance,
will usually not fulfill this condition: a feature that is standard for one product
type may be an optional feature for another type of the same kind.

4.2 Compromising Flexibility for Re-Usability: A Pragmatic
Approach

The main problem we encountered with the previous model is caused by the
variance of product types concerning possible configurations, i.e. their standard
and optional features. The following model offers a pragmatic solution to the ob-
vious conflict between flexibility (in terms of expressing configuration rules) and
re-usability. Our analysis of products has shown that for many product types
limited means to define configurations are sufficient. Therefore, the model com-
promises flexibility for re-usability. In contrast to the previous models, it does not
distinguish between optional and standard feature types. Instead it includes only
one Feature Type (see fig. 5), which contains an attribute default that allows
for expressing whether a feature type is mandatory (like wheels). Additionally,
it contains the meta attribute Instance Extra that is specified by the class At-
tribute Spec (see 4.2). It contains two tuples each of which serve to store the
denominator of an object level attribute and the type of this attribute. For exam-
ple, (Extra, Boolean) indicates that the object level attribute Extra is intended to
store a boolean value that specifies whether the corresponding feature is optional
or standard. To increase the level of re-use, an instance of Feature is not linked
to an instance of Concrete Product Type. Instead, the instances of Feature to be
used with a particular instance of Concrete Product Type have to be specified
within the XML string (attribute descript in Concrete Product Type). Similar
to the previous model, the structure of a product type as it can be deferred from
the corresponding feature types is stored as an XML DTD with the attribute
DTD of Product Type. Also, the structure of the corresponding product type is
stored as an instance of this DTD. This model allows for a high level of re-use
both on the conceptual level and on the instance level. The first being fostered
through the recursive specialization association with Product Type, the second

allows for

Abstract_Product

name: String
iD: String
description:String
...

refers to

0,*

0,*

1,1

0,*

1,1 0,1

1,1

0,*

Product_Variant_Type

Feature_Value

created: Date
specification: XML_String
...

Configuration_Type

Concrete_
Product_Type

descript: XML_String
height: Real
length: Real
width: Real

1,1
0,*

s
p
e
c
i
f
i
e
d

a
s

instance of

i
n
c
l
u
d
e

specialized from

Product_Type

DTD: XML_String
lenght_Unit: Unit
...

0,1

0,*

specialized
from

Feature

descript: XML_String

Feature_Type

DTD: XML_String
instance_Extra: Attribute_Spec
feature_Details: Attribute_Spec

instance of

0,*1,1

1,1

Fig. 5. Prototypical product model #3

by introducing meta attributes and corresponding XML strings. In comparison
with the previous model, this model offers limited ways to describe configu-
rations. While this may not be a serious disadvantage for many e-commerce
platforms, the introduction of meta attributes and XML strings has its price: it
certainly increases the complexity of a database that is instantiated from this
model. Firstly, for a user to enter data, it is demanding to understand the var-
ious levels of abstraction. Secondly, for retrieving product types with certain
features, using standard database search procedures is not sufficient. In addition
to that, it is necessary to parse XML strings, too. While the first disadvantage
can be compensated for to some degree by a user interface that hides most of
the complexity, the second disadvantage can be reduced by using standard XML
tools.

5 Conclusions and Future Work

In this paper we presented three prototypical conceptual models to represent
products for e-commerce platforms. While all of them fulfill the requirements
discussed in 2, each of them comes with specific strengths and drawbacks. Table
1 presents a comparison of the three models. Varying configuration rules refers
to a models ability to handle varying configuration rules within the concrete
product types that are instances of a product type the configuration rules were
defined for.

The concepts for product modeling presented in this article were created during
the development of a reference model for trading platforms on the Internet. The
reference model exists currently as an UML object model with approximately
100 classes that is accompanied by numerous models of corresponding business
processes. The representation of products within the reference model is similar

Table 1. Comparison of Models

model #1 model #2 model #3

generalisation of product types - + +

rich definition of configuration rules + + o

re-use of feature types - - o

re-use of features - + +

varying configuration rules - + +

to the last prototypical model. It covers, however, more aspects, like pricing,
composite objects (to represent e.g. a computer system consisting of a PC, a
screen and a printer) and packages. Our work on conceptual product modeling is
part of the research project ECOMOD (Enterprise Modeling for E-Commerce)
that is funded by the German National Science Foundation. Apart from this
application area we encountered similar problems with abstractions required for
the design of knowledge management systems ([3]) as well as for the design of
modeling tools. Therefore our future research is also aimed at investigating more
general design patterns for dealing with multiple levels of abstraction.

References

[1] Ariba: cXML Users Guide. Vers. 1.1 Boston, London: Artech House (1998)
[2] Commerce One: cXML Users Guide. Vers. 1.1 (2000) (www.cXML.org)
[3] Frank, U.; Fraunholz, B.; Schauer, H.: A Multi Layer Architecture for

Integrated Project Memory and Management Systems. In: Khoshrow-Pour, M.
(Ed.): Managing Information Technology in a Global Economy: Proceedings of
the 2001 Information Resources Management Association International Confer-
ence. Hershey; London; Melbourne; Singapore: Idea Group Publishing (2001)
336–340

[4] Frank, U. Delegation: An Important Concept for the Appropriate Design of
Object Models. In: Journal of Object-Oriented Programming. Journal of Object-
Oriented Programming. Vol. 13, No. 3 (2000) 13–18

[5] Frank, U. Applying the MEMO-OML: Guidelines and Examples. Arbeits-
berichte des Institut fr Wirtschaftsinformatik der Universitt Koblenz-Landau,
No. 11, Universitt Koblenz-Landau (1999)

[6] Frank, U. Enriching Object-Oriented Methods with Domain Specific Knowl-
edge: Outline of a Method for Enterprise Modelling. Arbeitsberichte des Insti-
tut fr Wirtschaftsinformatik der Universitt Koblenz-Landau, No. 4, Universitt
Koblenz-Landau (1997)

[7] Hmpel, C.; Renner, T.; Schmitz, V.: BMECat Specification. Version 1.01.
Technical Report, Universitt Essen (1999)

[8] Keller, A.; Genesereth, M.: Using Infomaster to Create a Housewares Vir-
tual Catalogs. The International Journal of Electronic Commerce and Business
Media, Vol. 7, No. 4 (1997) 41–44

[9] Meyer, B.: Object-oriented Software Construction. 2. Ed., Prentice Hall (1997)
[10] OASIS, UN/CEFACT: Electronic business XML (ebXML).

Technical Architecture Specification. Draft v 0.6.5
(www.ebxml.org/working/project teams/technical arch/) (2000)

[11] OBI Consortium: Open Buying on the Internet. Draft v 0.6.5
(www.ebxml.org/working/project teams/technical arch/) (1999)

[12] Schmitz, V.; Kelkar, O.; Pastoors, T.; Renner, T.; Hmpel, C.: Specifi-
cation BMEcat: Version 1.2 Technical Report, Universitt Essen (2001)

