
1

A Multi Layer Architecture for Integrated Project

Memory and Management Systems

Abstract
For an increasing number of companies, methods and technologies to promote
efficient project management are becoming critical success factors. An essential
prerequisite of successful project management is the fast availability of proper
knowledge. Current project management tools focus on planning and monitoring
particular projects. They are not designed to develop a corporate project knowledge
base. On the other hand, systems that deal with the representation and dissemination
of knowledge lack specific concepts to structure knowledge about projects. To fill this
gap, this paper introduces an architecture of a project memory and management
system that provides for storing, retrieving and disseminating knowledge about
projects. It thereby helps project managers, project workers and others involved with
a project to plan and monitor projects as well as to prepare for particular tasks
within projects. The architecture features various layers that allow to store, re-use
and view knowledge on different levels of abstraction. The layers are based on
comprehensive semantic models thereby allowing for powerful queries and
instructions.

1. Introduction
In a global economy with ever-increasing competition and decreasing product life
cycles, project management is becoming more and more important [Gray00]. For
companies to stay competitive it is not sufficient to adapt their organisational structure
to the needs of project management. In order to increase the productivity of projects,
purposeful and thorough management of knowledge is a crucial factor. This is
especially due to the fact that on termination all the project members’ collaborative
knowledge falls apart, its context ceases to exist, hence, project knowledge potentially
dangles unproductive or gets lost for the organisation. This is a challenge that
recommends a set of measures to be taken: Human resource planning, developing
appropriate ‘project cultures’, and last, but not least, specialized knowledge
management that is aimed at collecting, storing and disseminating knowledge gained
about projects. There is no doubt that, in addition to social and psychological aspects,
information technology - if applied in a sensitive way - can be a very effective driver
of successful knowledge management. Current project management tools focus on
planning and monitoring particular projects. They are not designed to develop a
corporate project knowledge base. On the other hand, systems that deal with the
representation and dissemination of knowledge, like decision support systems,
management information systems, document management systems, groupware
systems or organisational memory systems lack specific concepts to structure
knowledge about projects. This situation indicates that there is need for specialized
knowledge management systems to support project management – an assumption
which is backed by publications that emphasize the demand for software to assist
knowledge intensive project work, particular to the consulting industry ([HNT99],

2

[Sarv99]). In this paper we present an architecture of a system we call project memory
and management systems (PMMS) that is intended to fill this gap.
The concept of a PMMS was inspired by previous work on enterprise modelling,
knowledge management systems (KMS), and a project we currently carry out with a
number of small and medium sized enterprises (SME). During the last years we have
developed a method for enterprise modelling called MEMO [Fran97]. It is aimed at
providing for a set of integrated models each of which covers a particular perspective
on an enterprise (like ‘strategy’, ‘organisation’, ‘information system’). For this
purpose, MEMO includes an extensible set of modelling languages, like an object-
oriented language to model information (MEMO-OML, [Fran98]) or a language to
model organisational structures and business processes (MEMO-OrgML, for an
overview of the modelling languages see [Fran99]). An instantiated enterprise model
can be regarded as a repository of corporate knowledge which can be accessed from
different perspectives. It includes all relevant process types, organisational units,
resources etc. The MEMO language architecture proved to offer a reasonable
conceptual foundation for the design of knowledge management systems [Fran00].

It makes perfect sense to deploy knowledge management technologies in large
companies to foster the collection and dissemination of knowledge that would
otherwise be inaccessible to most of the employees. But even in small companies
appropriate technologies of this kind would be of great help. This at least is an insight
we gained from various projects we carry out with SMEs. One of those projects
funded by the Foundation for Innovation at the Ministry for Commerce Rheinland-
Pfalz is focussing on IT support for project management in SMEs. We found that in
SMEs there is a high demand for systems that provide relevant knowledge about
projects. This is due to limited human resources, the prominent position of the owner
and his intuitive knowledge. For these reasons, one of the project’s goals is to develop
a prototypical system to support project related knowledge management in SMEs.

To reflect these considerations and findings, a PMMS should provide for storing,
retrieving and disseminating knowledge and data about projects. It should thereby
support project managers, project workers and others involved with a project to plan
and monitor projects as well as to prepare for particular tasks within projects.

2. Requirements
In order to distinguish PMMS from related software types, such as project
management software, project management information systems [Mere95] or
organisational memory systems, we will develop more specific requirements.
Although this work was in part motivated by the insights we gained on SMEs, the
following considerations should be valid for large companies, too.
Prerequisite: Extra Value for Users

Numerous people may be involved and/or interested in a project. At first site, the
corresponding roles mainly include project managers and project workers. But
potential users of a PMMS could also be line managers (who may have to provide
resources), suppliers, customers, external consultants etc. All of these roles may range
from novice to expert level. For a PMMS to be an attractive alternative to existing
software, manuals and training, it is essential that it provides an additional value for
its prospective users. To depict this field, we will consider a number of questions and

3

instructions a PMMS should be able to answer faster, better and more reliable than
existing alternatives.

• Is there a generic structure that can be applied for any project?

• What are the resource types generally to be taken into account for planning a
project or projects of a certain purpose or type?

• Are there any critical success factors?

• What are promising approaches to render projects in an intuitive way?

• What cost categories should be differentiated in general to provide for
powerful project accounting/controlling?

• How can a project be integrated with an existing organisational structure?

• What are relevant features of qualification a project manager should have?

• Select all employees who are qualified to manage a certain project type.

• What is the average deviation of cost and time from the original targets in a
certain project type?

• Is the company able to complete a particular project within a certain time
frame?

• Suggest a team of possibly available employees that would form an efficient
team for a certain type of project.

• What are the most frequent reasons for project failures – in our company and
related industries in general?

• Is Jim Clark an efficient and reliable team worker?

• What is the current state of project X?

• What are appropriate measures to optimise cost or time in project X?

• Was the customer satisfied with the outcome of project Y?

• What is the relevant knowledge we gained from project Y?

Analysing these questions reveals that we are dealing with different levels of
abstraction. Some questions are concerned with projects in general while others focus
on special project types or even on peculiarities of a particular project. In addition to
answering questions or performing instructions, a PMMS should also foster
communication between those involved in a project. Often the members of a project
do not share the same professional, educational or cultural background. This is
especially the case for projects that involve many companies on an international scale.
In order to avoid friction caused by misunderstandings and deviating methods,
common standards are required: For organising projects (roles, responsibilities etc.),
for project accounting, for structuring and indicating resources. A PMMS should
serve as a repository to store and manage the corresponding concepts in a consistent
way.

Economic Consideration: Emphasis on Re-use and Adaptability

The questions and instructions demonstrated in the previous section indicate that the
content of a PMMS is only in part specific to a particular company. It also includes

4

knowledge, which can be found in textbooks. This relates to general concepts (‘What
is a project?’), but also to more specialized knowledge about certain project types –
for instance about planning software development projects. From an economic point
of view it is recommended to equip a PMMS with this generic body of knowledge.
This requires an appropriate terminology. One of the difficulties we found while
studying project management was the wide interpretability of terms and their
definitions. Taking a look at milestones, Litke e.g. defines them as the end of a phase
with a scheduled result. This milestone is reached only when the given result has been
approved by the quality control [Litk95]. The decision of where it is appropriate to
have a milestone is left to the manager. Type and number of milestones are to be
suitable for the type and risk of the project. In contrast a milestone can also be seen as
an easily identifiable key activity or event at the boundary between phases of a project
and should coincide with the completion of each package of the WBS [Lock96].
While milestones can also be seen more flexible as a natural, important control point
in time, that are easily identifiable by the participants [Gray00]. For this reason, it is
essential for a PMMS to introduce an appropriate terminology to store generic
knowledge and to guide the consistent collection of further knowledge.

Sometimes the concepts provided by a PMMS will not satisfy individual
requirements. Maybe a given project type does not entirely reflect the situation in a
particular company – or there is no predefined project type that comes close to a
required one. In these cases, a PMMS should allow to define own concepts (like
customized project types). To avoid conceptual redundancy, it should be possible to
build on existing knowledge – for instance by specializing existing concepts.

Consequence: Need for Multiple Levels of Abstraction

The requirements we have discussed so far suggest that a PMMS has to be based on
elaborate concepts that help to structure existing knowledge and guide the user with
organizing new insights about project management. In addition to that it should cover
different levels of abstraction. Sometimes it will be sufficient to retrieve a description
of a project that provides only an outline of the temporal relationships between high-
level tasks. In other cases it may be important to get a comprehensive description of
every task within the project as well as the required resources. A PMMS should
feature different layers to support the user with differentiating these various levels of
abstraction and to take advantage of (re-use) relationship between concepts on various
levels. In addition to different conceptual levels, the system should satisfy diverse
preferences to view concepts – for instance by supporting various diagram types used
to render projects.

3. The Architecture
The following architecture reflects the requirements outlined above. It is inspired by
the architecture we used for the implementation of MEMO Center, the tool that
accompanies MEMO [Fran94]. The architecture assigns different levels of conceptual
abstraction to different layers. In addition to these content layers, it includes a
presentation layer. The differentiation of three content layers serves to promote a high
level of re-use and flexibility.

The ontology level layer, which one could also call ‘generic level layer’, represents
the highest level of abstraction. It includes an object-oriented reconstruction of basic

5

terms/concepts that are suited to describe projects or knowledge about projects. The
domain level layer serves to capture knowledge about specific project types in certain
domains. This includes specifications of project structures, the required resources,
roles, specific documents etc. Only the project layer level serves to represent
particular project instances. While in principle any of the layers may be modified,
users should avoid changing the ontology level layer: Modifications to the ontology
level layer jeopardize the integrity of the models on the domain level layer.

The presentation level layers includes an extensible set of editors and viewers that
allow to access certain parts of the various content layers. The editors and viewers are
assigned to certain types of diagrams and documents. Notice that the architecture puts
emphasis on conceptual aspects. It does not take into account aspects like distribution
or persistence. Fig. 1 gives an overview of the architecture. Each layer will be
described in more detail below.

network chart

Selected Subjects Examples for Contents
presented to the User

A Project is aggregated from zero to
many tasks.
A task may use zero to many resources.
One or more organisational units are in
charge of a particular project instance.

Software Development aims at ...
There is exactly one employee ("Project
Manager") assigned to a particular instance.
...
An exception has to to be raised when the
project takes longer than maxDuration time.
...

This project started at 5/13/99 - 8:54.
Its current state is ...
James Brown is project manager.
The

"e
xp

la
in

"

"d
ril

l d
ow

n"

Project 1

Project 3
...

Project 2

"Software Development"

"Product Design"

Organizational Unit

Task Resource

Project

"K
no

w
le

dg
e"

 L
ev

el
"O

pe
ra

tio
na

l"
Le

ve
l

Ontology Level Layer

Domain Level Layer

Project Level Layer

work breakdown structure

P
re

se
nt

at
io

n
La

ye
r

E
di

to
rs

V
ie

w
er

s

Fig. 1: Overview of the architecture

The Ontology Level Layer
To separate the ontology level layer from the domain level layer, we applied the
following rule: Any concepts/propositions that apply to all types of projects should be
located on the ontology level layer. Concepts that are specific to a limited set of
projects belong to the domain level layer. Unfortunately, there are no theories
available about projects that would provide a comprehensive set of propositions valid
for all projects. Therefore the content of the ontology level layer is currently restricted
to generic definitions of relevant terms, like project, resource, etc. There are two
distinct options to model this layer. A meta model would allow to define a language
to describe project types – including relevant resource types, role types etc. This
language would then be used on the domain level layer to define a specific project
type as an instance of the meta model. A meta model approach has the advantage to
allow for a high level of flexibility. It also supports the construction of (at least

6

syntactically) valid models. While these features would be nice to have, meta models
imply a restriction that would cause a severe drawback for our purpose: A meta model
specifies how to define a project type (like the UML meta model specifies how to
define a class within an object model), but it does not allow to specify features that
are common to all project instances. But this is exactly what we want to do according
to the rule outlined above: Any feature that applies to all instances of all project types
belongs on the ontology level layer. For instance, every single project starts and
terminates at a certain time.

The second option to model the ontology level layer is to use abstract classes that
constitute a generic body of knowledge about projects. In order to allow for more
specific ‘memory structures’ for certain project types, these abstract classes can be
specialized into classes that reside on the domain level layer. Using a specialization
instead of an instantiation relationship between the ontology level layer and the
domain level layer allows specifying features that are valid for any possible project
instance already on the ontology level layer. For this reason we decided on a
specialization relationship. Unfortunately this approach has its pitfalls, too. While
specializing associated classes (Project and Role in Fig. 2) is a powerful abstraction
(it corresponds to the ‘Abstract Factory Pattern’ in [Gam+95]), it may lead to the
notorious covariance problem (for possible solutions see [Meye97]). A further
problem relates directly to the purpose of a PMMS, namely storing knowledge about
projects. For this purpose it is essential not only to describe particular projects
according to a certain conceptual structure, but also to store insights/information
about a project type. This, however, is not possible with classes that represent sets of
project instances. For example, one could not express a feature like ‘averageDuration’
of all projects of a certain type. To allow for this important level of abstraction, we
enhanced the model with metaclasses. A metaclass serves to describe features of a
class which would be its only instance. Hence, it is possible to express that
‘numberOfInstances’ or ‘averageDuration’ are features of a certain project type
(represented by a class). Except for Industry all classes on this layer are abstract
classes that need to be refined on the domain level layer. Fig. 2 shows a simplified
excerpt of the object model (in UML notation) that is the conceptual foundation of the
ontology level layer. It also shows a few metaclasses that correspond to classes with
the same name. The instance of a metaclass is initialised on the layer the class belongs
to.

7

Fig. 2: Excerpt from the object model of the ontology level layer

The implementation of metaclasses depends on the concepts provided by the
implementation level languages. Implementation is convenient with languages like
Smalltalk that feature metaclasses. Otherwise one might define special classes with a
sole instance that serves to represent features of a class. In addition to that one has to
protect the semantic integrity of the relationship between a virtual meta class and the
corresponding class.

The Domain Level Layer
This layer serves to create, edit and store domain specific knowledge, hence,
knowledge about certain types of projects and the related types of resources, roles etc.
The domain level layer includes a number of project types. They are specified by
specializing the required classes from corresponding abstract classes on the ontology
level layer and by instantiating objects from Industry. In addition to predefined project
types, the users of a PMMS may add further types by specializing existing classes.
For users of a PMMS it can be very helpful to navigate to project types that are
similar to a given type. Since we did not find a convincing formal concept of
similarity (looking at common features is certainly not enough), we decided to leave it
to those who create or maintain the domain level layer. They may associate two
project types as being similar.

takesP
laceIn

assigned to

produces

assigned to

name: String

Cost_Category

deviation: Money

numberUsed: Integer
numberPlanned: Integer
costPerUnit: Money

Resource_Item

name: String

Org_Unit

name: String
unit: UnitType
estCostPerUnit: Money
lessonsLearnt: Text
availability: Level
quality: Text
standards: Text

Resource
competence: Text
comments: Text

Role

Position Agg_Unit

name: String

Process

Event

startedAt: DateTime
terminatedAt: DateTime
toStartAt: DateTime
toTerminateAt: DateTime
successLevel: Level

Project

name: String

Industry

defaultAction: Action
costCaused: Money

Exception
TaskAgg_Project

requires

0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,1

1,*

inChargeOf

Supplier Client ProjectManager

ITToolMaterial

occuredAt: DateTime

AbstractEvent

name: String

Organisation

name: String
created: DateTime
size: Integer
sizeUnit: UnitType

Document

OR_Event AND_Event XOR_Event

triggers

0,*

0,*

uses

0,*

part of

0,1

0,*

delivers

0,*

0,*

in
C

ha
rg

eO
f

kind of

0,* 1,1

0,*

requires

0,*

0,*

produces

0,*

0,*

subject: Subject
plannedQuality: Level
actQuality: Level

Result
produces

0,*

1,*

1,1

0,*

criticalSF: Text
generalGuideLines: Text
averageDur: TimePeriod
totalInstances: Integer
totalCurrInstances: Integer
averageProfit: Money
averageDeviation: TimePeriod
lessonsLearnt: Text

<<Meta>>
Project

profile: Text
numberOfInstances: Integer
numberOfExtInstances: Integer
lessonsLearnt: Text

<<Meta>>
Role

numberOfInstances: Integer
numberOfInstPerProject: Integer
averageCostCaused: Money
lessonsLearnt: Text

<<Meta>>
Exception

isSimilarTo

0,*

0,*NO cyclic
decompostion

on the instance
level

NO cyclic
decompostion

on the instance
level

8

The conceptualisation of projects used on the ontology level layer bears obvious
similarity to the conceptualisation of (business) processes. Therefore it seems
reasonable to deploy technologies that are used to support business processes, such as
workflow management systems, also for projects. That requires identifying common
abstractions of projects and processes or – more straightforward – to map concepts
used to describe projects to those used for the description of processes. Workflow
management systems seem to be an appropriate technology to support project
management. The architecture of workflow management systems proposed by the
Workflow Management Coalition (WfMC) includes a ‘workflow engine’ that controls
a workflow according to a declarative specification of a corresponding workflow type.
Fig. 3 shows an example that illustrates how to define a project type (and the
corresponding ‘memory’ structure) and how to map it to the specification of a
workflow type using the Workflow Process Definition Language (WPDL).

9

Model to specify a project type (excerpt)

PMS Domain Level Layer

WPDL Specification

WORKFLOW 'ProductDevelopment'
WPDL_VERSION 1.0
VENDOR Vendor:Product:Release
CREATED 1999-04-05
DESCRIPTION 'WPDL-Notation of ProjectInquiry'

AUTHOR 'WG/1B'
STATUS UNDER_REVISION
CLASSIFICATION 'example'
DURATION 23564

.....
END_WORKFLOW

WORKFLOW 'PatentInvestigation'

WPDL_VERSION 1.0
VENDOR Vendor:Product:Release
CREATED 1999-04-05

// <Workflow Process Relevant Data List>
DATA object

Class Order
END_DATA
DATA object

Class Product
END_DATA

....
END_WORKFLOW

WMS Schema Level

prototypeName: String
priorityLevel: Integer

ProductDevelopment

Agg_Project

Task

Patent
Investigation

TechnicalDraft

CheckPatent_DB ...

...

NotPatent
Protected...

protectedPart: String
protctedFrom: DateTime
protectedUntil: DateTime
patentID: String

PatentExists
DraftFinished

Event

Exception

Fig. 3: Object model of a project type and corresponding workflow specification
(excerpts)

10

The Project Level Layer
The project level layer consists of objects that store information about particular
projects according to the specification of the classes on the domain level layer.
Therefore its main purpose is to support the monitoring of projects. In addition to that
it contributes also to the knowledge management function of a PMMS. While we
would not regard descriptions of singular projects as general knowledge, they are an
important source of knowledge creation. The generalisation of experience gained in
singular projects recommends employees with a specialized qualification. For
companies that conduct a large number of projects, automated, search for common
patterns can provide valuable hints for those employees. The rich structure of the
concepts a PMMS is based on provide a promising prerequisite for corresponding
inductive procedures. Together with the other content layers, the project level layer
fosters learning processes by supporting individual cognitive preferences. A user can
access a PMMS either on the project level layer or on a higher level of abstraction.
Afterwards he may want to drill down to concrete examples or get a more general
view. Provided they are initialised appropriately, the three content layers of a PMMS
allow to handle all the questions and instructions listed above in a satisfactory way.

The Presentation Level Layer
Like any other interactive system a PMMS needs a user interface. To satisfy different
perspectives on its content, the presentation level layer includes an extensible set of
editors and viewers. They allow to edit or view diagrams of various types (for
instance: Work breakdown structures or network diagrams) as well as various types of
documents. Usually, common diagram types can be applied to represent project types
as well as project instances. Documents can be used for any content level. Additional
object models that refer to the corresponding classes on the content layers define the
semantics and abstract syntax of a diagram type. The concrete syntax (graphical
notation) is in part defined by graphical symbols that can be selected by a user to
customize the graphical representation of a diagram type.

While the various users of a PMMS may want to decide for different editors/viewers,
they should always see the same state of the system. For this purpose the presentation
level layer and the content layers interact according to the model view controller
paradigm: The content layers serve as model, while the presentation layer includes
controller and view. This ensures that every view (within an editor or viewer) will be
transparently informed about any relevant changes of the model’s state.

4. Use and Maintenance
The benefit a company can gain from a PMMS depends crucially on the quality of the
stored knowledge. This recommends to apply special attention to the maintenance of a
system's content. The administration effort varies significantly depending on the level
of the architecture. Most users will update the system only on the project level layer.
The elaborate structure guides the user with entering data in an appropriate way.
Hence, there is no apparent need for additional qualification or further education on
this level.

Maintenance on the domain level layer requires highly qualified employees. Not only
that they should have a deep understanding of project management. Furthermore they
need a well developed ability to find proper abstractions. But qualification may not be

11

enough to give an employee write access to the domain level layer. To ensure a
consistent growth of knowledge it may be necessary to restrict administration rights
for this level to one administrator only. Obviously, maintenance of the domain level
layer may be not an option for many SMEs. However, it is not very likely that there is
need for change on this level anyway. Even for those companies with sufficiently
qualified employees the question remains whether it is economic to modify the
domain level layer or to have an external expert do the job (‘make or buy’). In the best
case there will be reference specifications of many project types that can be acquired
off the shelf or from specialized service providers. As a default, users should not
change the ontology level layer. This is only an option, if it makes sense for a (large)
company to develop its own project ontology.

The maintenance of a PMMS depends on its use. The more people enter data on the
project level layer, the better are the chances to detect useful generalisations for the
upper level layers. Also, the more people access the system, the better the quality
management of its content – as long as users have a chance to report misconceptions
they detected. For this reason, it is of crucial importance to establish effective
incentives for users of all layers of a PMMS. Experience with incentives to motivate
software re-use or the development of reusable artefacts respectively indicates that
quantitative measures (like lines of text entered) tend to be contra-productive. Instead,
it should be a sufficient motivation for many people to get credit from those they
could help with their input. This can be accomplished by asking a user to rank a
particular piece of knowledge that was provided by somebody else.

5. Conclusion and Future Work
The architecture we proposed in this paper allows to integrate project planning and
monitoring with the management of knowledge about projects. Different from
document management systems that are currently used by some companies to store
knowledge about projects, a PMMS features concepts on a much higher level of
semantics. Thereby it allows to handle queries and instructions that would be out of
reach for a text retrieval system. By separating different levels of abstraction, the
architecture supports a reasonable organisation of knowledge, fosters re-use of
existing generic knowledge and provides guidelines for the maintenance of
knowledge. Therefore a PMMS should be valuable source of knowledge for expert
and novice project workers.

Our focus is currently on refining the proposed project ontology and expanding its
nucleus to an enterprise ontology based on MEMO [Fran97]. Further we will provide
for multi-lingual dictionaries and support for spatially distributed projects in different
languages. At present time the architecture is restricted to conceptual models.
However, we plan a prototypical implementation (using Smalltalk or Java) to evaluate
the concepts in projects carried out by co-operating SMEs. Within this case study
relevant project management content will be exchanged between participating
companies by encoding selected classes to XML DTDs and objects to XML
documents respectively.

12

References

[Dunc96] Duncan, W. R.: A Guide to the Project Management Body of
Knowledge, Newtown Square 1996

[Euze96] Euzenat, J. Corporate Memory Through Cooperative Creation of
Knowledge Bases and Hyperdocuments, in Proceedings 10th Banff
Workshop on Knowledge Acquisition for Knowledge-Based Systems.
SDRG Publications, 1996 pp. 1-18

[Fran94] Frank, U.: MEMO: A Tool Supported Methodology for Analyzing and
(Re-) Designing Business Information Systems. In: Ege, R.; Singh, M.;
Meyer, B. (Hg.): Technology of Object-Oriented Languages and
Systems. Englewood Cliffs 1994, pp. 367-380

[Fran97] Frank, U.: Enriching Object-Oriented Methods with Domain Specific
Knowledge: Outline of a Method for Enterprise Modelling.
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 4, Juli 1997

[Fran98] Frank, U.: The Memo Object Modelling Language (MEMO-OML).
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 10, Koblenz
1998

[Fran99] Frank, U.: Memo: Visual Languages for Enterprise Modelling.
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 18, Koblenz
1999

[Fran99] Frank, U.: Applying the MEMO-OML: Guidelines and Examples.
Arbeitsberichte des Institut für Wirtschaftsinformatik der Universität
Koblenz-Landau. Nr.11, Universität Koblenz-Landau 1999

[Fran00] Frank, U.: Multi-Perspective Enterprise Models as a Conceptual
Foundation of Knowledge Management Systems. In: Proceedings of
the Hawaii International Conference on System Sciences, Los
Alamitos, Ca. 2000

[Gray00] Gray, Clifford F./Larson, Eric W.: Project Management, Newtown
Square 2000

[HNT99] Morton T. Hansen, Nitin Nohira, Thomas Thierney: What's Your
Strategy for Managing Knowledge? In: Harvard Business Review,
March-April 1999, S. 106 – 116

[Litk95] Litke, Hans-D.: Projektmanagement, 3rd Edition, München 1995

[Lock96] Lock, Dennis: Project Management, 6th Edition, Brookfield 1996

[McD99] Richard McDermott: Why Information Technology Inspired But
Cannot Deliver Knowledge Management. In: California Management
Review. Vol 40 No. 4, p. 103 – 117

[Sarv99] Miklos Sarvay: Knowledge Mangement and Competition in the
Consulting Industry. In: California Management Review. Vol 41 No.
2, p. 95 - 107

