
1

Object-Oriented Modelling Languages: State of the Art
and Open Research Questions

Ulrich Frank

"Language is my instrument, but at the same time my problem."

Maturana

Abstract

Object-oriented modeling is used in a growing number of commercial software development
projects. But the plethora of approaches and corresponding CASE tools still prevents corporate
users from migrating to object-oriented software development methods. Against this back-
ground the recent efforts of the Object Management Group (OMG) to standardize object-ori-
ented modeling languages seem to promise substantial benefits: Not only will a standard allow
to transfer a model from one CASE tool to another, it will also protect investment in training.
However, at the same time it is questionable whether the state of the art in object-oriented mod-
eling is mature enough to allow for standardization. In order to answer this question, we will
briefly describe the proposals submitted to the OMG in January 1997. We will then show that
there are still essential problems in designing modeling languages which have not been ad-
dressed yet.

1. Introduction

During the last decade, object-oriented software development has been adopted in the academ-
ic world with remarkable enthusiasm. This is different with corporate software development:
Although there is a tremendous marketing push caused by vendors, consultants, and specialist
journals, many companies are hesitating to introduce object-oriented methods1. This is for
comprehensible reasons: At present time, there are still serious inhibitors of object-oriented
software development to overcome. There is lack of mature technology. While there are ob-
ject-oriented programming languages that come with reliable compilers - sometimes embed-
ded in rather convenient environments, today’s object-oriented database management systems
are usually not suited to replace relational database management systems within corporate in-
formation systems. Furthermore there is lack of competence. In order to exploit the benefits
offered by the object-oriented paradigm, and to avoid its pitfalls, it is necessary for the devel-
opers to gain a deep understanding of the essential concepts. It is certainly not too daring to
assume that most software developers do not have these skills today. From a managerial point
of view it is risky to provide for the training that is required to develop these skills: Not only
that training is expensive, and its success is hard to predict; furthermore, there is still lack of
standards. This is the case for object-oriented programming languages and database manage-
ment systems, as well as for specialized development methods. For this reason protection of
investments, both in professional training and in technology (CASE, compilers, etc.), is usual-

1. To our knowledge there is no representative study on an international scale. A recently conducted em-
pirical study ([Sch97]) indicates that less than 10% of the german insurance companies use object-
oriented software development methods.

Published in: Schader, M.; Korthaus, A.: The Unified Modeling Language. Technical Aspects and Applications.
Heidelberg: Physica 1998, S. 14-31

2

ly not satisfactory.

Although many companies are still hesitating to introduce object-oriented methods and tech-
nologies, there is no doubt that the future (that is at least the next ten years) of corporate soft-
ware development will be more and more object-oriented - simply because there is no alterna-
tive paradigm of similar relevance. In other words: The already big market for object-oriented
concepts, training, and technologies can still be expected to grow at a fast pace. However, in
order to encourage corporate investments, it is not sufficient to develop mature technologies.
In addition it is crucial to provide reliable standards that foster interoperability and reusability,
and protect investments at the same time. Only recently it became apparent that the various di-
alects of object-oriented modeling will eventually be replaced by an industry standard model-
ing language: The "Object Management Group" (OMG) issued a request for proposals for ob-
ject analysis and design ([OMG96]). The submissions were due at January, 17th, 1997. The re-
view process can be expected not to be completed before the end of 1997. The OMG’s request
for proposal was one cause for writing this article which will focus on the following questions:

• What are the particular benefits to be expected from standardized modelling languages?

• What is the OMG’s intention?

• What are the characteristics of the official proposals to the OMG?

• Is the current state of the art mature enough to allow for standardization?

2. Background of Current Standardization Efforts

While it is no option to standardize a modeling method or even a modeling methodology (see
[Fra97]), the standardization of object-oriented modeling languages promises substantial ben-
efits for the development and utilization of software. Standardized modeling languages will al-
low for better protection of investments in technologies that depend on those languages - like
modeling tools and ODBMS. This is the case for investments into training, too. Standardized
modeling language will also improve the chance for exchanging models and interoperability
in general, or - in other words - for system integration. Furthermore, standardized modeling
languages will foster reusability of existing models, for instance of generic or reference models
developed for certain problem areas or domains. Standardized modeling languages are also a
prerequisite for the emergence of a market for standardized (implemented) classes for corpo-
rate information systems, often referred to as "business objects". It is not possible to establish
a market for business classes/objects that have been specified/implemented independent from
each other: Usually objects, which are to be used in a certain domain, will interact with other
objects/classes. Furthermore, it is important to represent business objects in an illustrative way.
For these reasons, the vision of providing standardized business objects in the long run requires
application level object models together with a corresponding implementation - either as a
class library or as a framework (see [LeRo95]). Standardizing application level object models
implies the existence of a standardized modeling language.

Against this background it is not surprising that there is a growing demand for the standardiza-
tion of object-oriented modeling languages in the industry. The OMG has addressed this issue
in 1992 already by launching the "Object Analysis and Design Special Interest Group"
([KaCh92]). But this group did not succeed to meet its central objective: "To formalise the def-
initions of the concepts used for analysis and design" ([KaCh92], p. 12). Apparently for this

3

failure, the OMG issued a request for proposals for object analysis and design in 1996
([OMG96]). The aim of the initiative is to standardize "the interfaces and semantics needed to
support the creation and manipulation of a core set of OA&D models that define the structure,
meaning, and behavior of object applications" ([OMG96], p. 3). In particular, the standard
should support the creation of "static models", "dynamic models", "usage models", and "archi-
tectural models". It seems that the OMG is primarily interested in CASE tool interoperability.
Nevertheless, the OMG’s statements about the purpose of the "OA&D facility" leave a number
of questions:

What is the precise objective of the intended standard?

The explicit reference to tool interoperability indicates that the standard is to describe meta-
models for those models managed by CASE tools. However, the OMG stresses the conceptual
level as well: "An object analysis and design model (hereafter called simply model) is defined
as an object that represents the semantics of an analysis or design of a system. A model is used
to define and specify the semantics of interest in a particular aspect of the domain." ([OMG96],
p. 13) Furthermore, the OMG requires notations which enable "a core set of OA&D diagrams,
each of which describes a model, to be communicated between people without semantic loss."
([OMG96], p. 4). Note that tool interoperability and modeling languages as an instrument for
system development require different specifications. While a model that is managed by a tool
should be suited to incorporate the semantics defined in the corresponding modeling languag-
es, it will also include additional information, like for versioning, user management, etc. De-
fining a language for communication between people on the other hand requires to take into
account human perception and conceptualization.

What is the scope of the (meta) models to be specified?

While the request for proposals provides examples for a number of models that might be part
of the standard ("class models", "instance models", "state-transition models", "use-case mod-
els", etc.), it does not tell the level of semantics they should incorporate. In other words: What
are the stages of the software life-cycle to be covered - in part, or completely - by the modeling
languages to be defined? There is evidence that the OMG does not plan a rigid standard any-
way:

"The OA&D facility should not constrain the processes and techniques that OA&D methods
use to extract the information needed to determine the semantic content of OA&D models, to
ensure the integrity and validity of the content of those models, or to evolve or optimize those
models. Nor should the facility constrain OA&D methods from introducing models in addition
to the core set." ([OMG96], p. 4)

How does the intended standard relate to other standards?

There is no doubt that the standard should be compliant to existing OMG specifications - such
as the Interface Definition Language (IDL). However, there are at least two standardization ef-
forts outside the OMG which are concerned with subjects that are obviously related to analysis
and design. Firstly, there is the CASE Date Interchange Format (CDIF), defined by the CDIF
division within the Electronic Industries Association (EIA). CDIF is dedicated to support the
exchange of models managed by CASE tools. CDIF does not specify the metamodel a tool has
to use itself. Instead, it is restricted to the external representations that a tool has to support with
its interfaces. With the ISO "Information Resource Dictionary System" (IRDS, [ISO90]) and

4

the "Portable Common Tool Environment" (PCTE, [Wak93]), an initiative launched by tool
vendors, two major standardization efforts are committed to using the CDIF metamodel
([CDI96]).

Secondly, there are the activities of the Workflow Management Coalition (WfMC). Similar to
the OMG the WfMC is an industry consortium. It aims at a set of standards that are to allow
for "open" workflow management systems. In order to achieve this goal the WfMC intends to
define a set of interfaces for the components to be integrated (such as office application,
DBMS, and so called workflow engines) as well as a "Workflow Process Definition Lan-
guage" (WPDL, [WFM96]). The idea behind this approach is similar to entity relationship
modeling and SQL respectively: A workflow type can be modeled using an appropriate mod-
eling language provided by a corresponding tool. The modeling language will then translate
into the WPDL which can be interpreted by any workflow engine that has been certified by the
WfMC. There is a clear relationship to the mission of the OMG’s "Object Analysis&Design
Facility": In order to model a workflow, you need to describe the information required and pro-
duced within that workflow - for instance by referring to an object model. While both, the EIA
([CDI96]) and the WfMC ([And96], p. 21) refer to the OMG, to our knowledge the OMG itself
does not explain its relationship to those approaches, nor does it even mention them.

3. Object-Oriented Modelling Languages: Is there a State of the Art?

Standardizing technologies or concepts requires a mature level of corresponding research ac-
tivities. With object-oriented modeling, it is impossible to identify a unique scientific commu-
nity that is dedicated to this subject. This is for a number of reasons. Firstly, object-oriented
concepts have various roots, including programming languages, database design, and artificial
intelligence. Secondly, there are contributions from authors with either a commercial or a more
academic background. Therefore, the selection we made, is a compromise: We will primarily
focus on what you could call the "dominating" state of the art. For this purpose, we will have
a look at the languages submitted to the OMG early this year. By the time of writing this, some
of the proposals have apparently been withdrawn. Nevertheless, we will consider them briefly,
since they give an impression of the current state of the art.

3.1 The Proposals to the OMG

Until the deadline at January 17th the following six proposals had been submitted to the OMG:

Company/Consortium References Extent (pages)

Taskon; Reich Technologies; Humans and
Technology

[Tas97] 101

IBM; ObjecTime Limited [IBM97] 196

Softeam [Sof97] 37

Platinum Technology [Pla97] 318

Ptech [CeIb97] 58

Rational Software; Microsoft; Hewlett-Pack-
ard; Oracle; Texas Instruments; MCI System-
house; Unisys; ICON Computing; IntelliCorp.

[Rat97a] ... [Rat97d] >550

5

Taskon; Reich Technologies; Humans and Technology

This submission does not claim to describe a complete set of object-oriented modeling lan-
guages. Instead, its authors intend to provide an "extension of the UML, and the OML object
models" ([Tas97], p. 1). It originates from a number of previous approaches (like [Ree95],
[WiWi90]). Its main emphasis is on three additional basic concepts: role model, role, and port.
Roles emphasize another level of abstraction than classes. A role represents a particular real
world object’s role within a certain activity. A role model describes the interactions of roles
within an activity. Those interactions are invocations of operations in other roles/objects. Ap-
parently role models are to be used mainly during analysis, in order to record systematically
the features of classes within a corresponding object model ([Tas97], p. 15). A port is described
as "an abstraction on a variable, permitting the object represented by the adjoining role to ex-
ecute operations in the object represented by OtherRole." ([Tas97], p. 50) This concept is not
sufficiently explained. We assume that it is similar to - although not equivalent - to delegation,
where an object may transparently access operations of its role object ([FrHa97]). The meta-
model itself is defined using the IDL standardized by the OMG. Although this has been en-
couraged by the OMG, there is no doubt that IDL is not suited to serve as a modeling or spec-
ification language, since it lacks relevant concepts (for instance: it is not possible to express
cardinalities or more specific constraints).

There is one other suggestion within this proposal that we would like to mention: "system in-
heritance" is to provide for specializing from "the overall system structure and behavior prop-
erties" ([Tas97], p. 14). As the authors state, such a concept would certainly be helpful for de-
signing reusable frameworks. That, however, would require a precise definition of this type of
inheritance - especially how to modify and enhance an inherited system. We could not find
such a definition within the proposal. Although Reich claims to be a tool vendor, it seems that
this consortium is focusing on the applications of modeling languages rather than on metamod-
els which would promote tool interoperability. The authors have rather elaborated ideas about
the particular models to be used within a software development project. They suggest not less
than nine partial views (like "area of concern view", "stimulus-response view", "role list view",
"interface view", etc.) together with corresponding modeling notations. The models are de-
scribed in an informal way ([Tas97], pp. 88).

IBM; ObjecTime Limited

This proposal, submitted by IBM and ObjecTime, covers what may be called the "full range"
of common object-oriented modeling: static properties, behavior, and dynamics. Nevertheless,
the authors apparently do not intend to define a complete set of languages for object-oriented
modeling. While they completely abstract from modeling notations, they put strong emphasis
on language semantics and pragmatics. It is characteristic for this outstanding submission that
it starts with analyzing the requirements related to modeling languages in general. The authors
make the assumption that models may serve a wide range of purposes, which can hardly be
determined in advance. To illustrate this point, they distinguish between "general purpose
modeling languages", "domain specific modeling languages", and even "application specific
modeling languages". Furthermore, they state that modeling languages should take into ac-
count concepts which are appropriate for a particular purpose (and particular people) rather
than reconstructing programming languages. On the other hand they argue that modeling ap-
plied to software development at some point requires formal definitions of the modeling lan-
guages. From these assumptions they conclude that there is "need for extensibility", "for lan-

6

guage and method independence", and "for formality and interoperability" ([IBM97], pp. 12).

The consortium presents a "Core Meta-Model (CMM)" which is the foundation for the models
that can be built within this approach. The CMM contains generic concepts which allow to ex-
press static, dynamic, and interaction semantics. It is characteristic for the level of abstraction
suggested by this proposal that the CMM does not explicitly contain core concepts of object-
oriented modeling such as classes or objects. Instead the CMM provides abstractions which
may be specialized further. One of the core abstractions is called "specification". Specification
is an abstraction of concepts like type and class: "Specifications representing pure interfaces
will have all Features unimplemented, those representing concrete classes will have all Fea-
tures implemented, and further possibilities exist in between." ([IBM97], p. 37) Compared to
other submissions, there is a stronger emphasis on formalization. For this purpose the authors
introduce and define a formal language called "Object Constraint Language" (OCL) that is
used to specify the CMM. It also helps with the specification of additional modeling languages,
since the OCL in general is used to specify invariants within model schemes. Additionally,
each "model scheme may define a Grammar for each type of Expression" ([IBM97], p. 72) -
like invariants or conditions. The proposal includes a few examples of how to specify a model
scheme. Smalltalk "design models", for instance, can be introduced by a scheme which in-
cludes - among other things - invariants to constrain generalization to single inheritance, or to
express that every element within a class has exactly one name. The ability to introduce spe-
cialized languages which are defined by concepts in more general languages is a promising ap-
proach - last but not least to support the idea of standardized business object models. Notice,
however, that extensibility - like the definition of new modeling languages with existing meta
concepts - is not sufficient to allow for a straightforward interchange of models expressed in
such a new language: Standardized meta concepts do not imply that the special concepts of a
particular modeling language will be standardized, too. For instance: If you define a language
scheme for a business modeling language, you may want to introduce a concept like "Organi-
sational Unit". It is probably very hard to define such a concept in a way that everybody is will-
ing to accept. Nevertheless a standardized metalanguage allows to determine precisely how a
specialized concept was defined - even if you do not agree with it.

Although the authors point to the fact that modeling languages should suit a particular purpose,
providing particular modeling languages is not their main concern. Instead they refer to ap-
proaches such as the UML or the OML ([IBM97], pp. 131) which they consider as possible
applications of their specification. From our point of view, this is a very ambitious, yet sub-
stantial approach. To briefly summarize our impression, we think that the strength of this ap-
proach marks a possible weakness at the same time. Taking into account the realistic assump-
tions on requirements for modeling languages, it is certainly a good idea to provide for a high
degree of extensibility: Thereby developers (and users) of specific modeling languages will
not be restricted to concepts which do not fit their needs. However, by allowing for almost ar-
bitrary specific modeling languages, standardization does not happen on the level of those lan-
guages.

Softeam

This submission is based on the "Class Relation method" which was introduced in 1989, and
revised later ([Des94]). Softeam’s proposal is certainly not as complete as for instance the pre-
vious one. In fact, it seems that the authors primarily intend to introduce a few concepts as al-
ternatives to corresponding concepts of the UML. In particular, they suggest an "object flow

7

model" that is to provide a representation of operations behavior. Most remarkable, from our
point of view, is the introduction of a special state diagram that is based on the "Hygraph" prin-
ciple suggested by Harel. It is motivated by the fact that the state charts often used in object-
oriented modeling neither allow for a well defined integration with object models, nor do they
allow to express generalization/specialization hierarchies. The suggested state diagrams can be
decomposed into two different categories ([Sof97], pp. 7). "Control state diagrams" focus on
the usage of a class, describing what is to be expected from an instance of this class from an
external point of view. The authors state - referring to [Des94] - that control state diagrams can
be completely translated into pre- and postconditions. "Trigger state diagrams" represent a par-
ticular implementation of a control state diagram. In other words: They describe the actual dy-
namics a class has to implement in order to satisfy the requirements specified in a correspond-
ing control state diagram. Figure 7 gives an overview of the control state diagram metamodel.

The specialized state charts suggested by Softeam promise both a better integration with other
partial models, and to take advantage of generalization/specialization. Notice, however, that
the corresponding concepts are not defined in the proposal itself - which comprises only about
30 pages. Instead it is referred to [Des94].

Platinum Technology

Platinum used to be a provider of tools for the development and maintenance of relational
DBMS. With the acquisition of Protosoft, the developer of an object-oriented modeling tool
called "Paradigm Plus", Platinum became one of the major vendors in this market. "Paradigm
Plus" is claimed to support various popular modeling approaches, such as OMT ([Rum91]),
OOSE ([JaCh92]), and Booch ([Boo94)]. Against this background it is not surprising that Plat-
inum’s submission puts strong emphasis on tool interoperability. The proposal includes seven
modeling languages, each of which is assigned to a so called "subject area". Each subject area
represents a certain view on a system - such as object models, dynamic models, architecture
models, etc. The subject areas are defined by seven corresponding metamodels which are tight-
ly coupled. The concepts shared by all seven metamodels are assigned to an additional subject
area called "Foundation and Common Subject Areas", which in turn is defined in a correspond-
ing metamodel.

Notice that the COMMA ("Common Object-oriented Methodology Metamodel Architecture")
metamodel, proposed by the OPEN consortium ([FiHe96), "had a major influence" ([Pla97],
p. 13) on those metamodels. Furthermore the metamodels are defined within a common "meta
meta model". It is based on the CDIF meta metamodel ([EIA93], in other words: it uses the
concepts defined in this reference model). Therefore the metamodels can be exchanged be-
tween all tools which are capable of using the CDIF interchange standard formats.

The meta metamodel provides a few core concepts which are "totally immutable" ([Pla97], p.
16). "Extensibility" of subject areas can be accomplished by modifying the corresponding
metamodels. Notice, however, that extensibility is restricted to the expressive power of the
concepts defined in the meta-metamodel. Since those concepts are essentially restricted to data
structures it seems that there is no way to specify constraints that go beyond the description
provided by such structures - as it is possible in the metamodel suggested by IBM and Objec-
Team.

The submission includes an extensive description of the meta-metamodel as well as of the
metamodels (about 2/3 of the whole document). By referring to an existing standard for ex-

8

changing information between CASE tools (CDIF), it is probably of special value for tool pro-
viders. However, from our point of view the proposal neglects to consider the requirements of
conceptual modeling: A modeling language is not only thought to define models for the pur-
pose of exchanging them between programs. Instead, it is also a tool to support to an intellec-
tual endeavor. In other words: It includes pragmatic aspects as well. It seems that these aspects
are not Platinum’s primary concern - on the contrary: In the past Platinum has gained its rep-
utation as a tool vendor by supporting many modeling languages. In order to hold on to this
tradition, the proposal is restricted to metamodels which can be used to define a set of partic-
ular modeling languages. To emphasize this point of view, Platinum does not provide a spe-
cific notation. Instead it is argued that the proposed specifications "are fully compatible with
the current state of the art in object modeling notations" - a statement that is illustrated by small
examples. They refer to other approaches which put more emphasis on notation ([Pla97], pp.
305). Although the "current state of the art" is hard to identify, such a statement is rather daring:
Notations only make sense with associated concepts. We doubt that the meta-metamodel al-
lows to express the semantics of any concept that may be useful within object-oriented mod-
eling. For instance: How would you express the specific semantics of delegation (see
[FrHa97]).

Ptech

The authors of this proposal first make a few assumptions on the purpose of modeling languag-
es. They emphasize both, the need to offer a medium to foster effective communication be-
tween humans with different professional backgrounds, and the need for tool interoperability
([CeIb97], pp. 1). They provide metamodels for five types of models: "structural models", "ar-
chitectural models", "behavioral models", "distributed processing models", and "usage mod-
els". It is remarkable that the authors seem to be very much inspired by relational theory. In
order to define the concepts they suggest for object-oriented modeling, they often refer to no-
tions such as "set", "domain", "range", or "relation" - for instance: "The associations that im-
plement the relation are named customer and order." ([CeIb97], pp. 3).

To some degree this proposal benefits from the precision of relational theory. It lacks, howev-
er, a specific object-oriented point of view - in other words: The authors seem not to have over-
come the separation of function and data. For instance, they speak of "... an operation that can
be performed on instances of a class." ([CeIb97], p. 14) Although the authors state that their
metamodels "guarantee that all Ptech models are logically consistent." ([CeIb97], p. 1), the
documentation of the metamodels does not seem to be complete. While the metamodels are
said to be extensible ([CeIb97], p. 1), it is not demonstrated how an extension can be accom-
plished. Furthermore, there is no language included that would allow to specify additional con-
straints. From our point of view, the most remarkable aspect of this proposal is the background
of the Ptech method: It has been used for "understanding, analyzing, capturing, validating, and
documenting business processes and systems." ([CeIb97], p. 1) It is surprising that the authors
did not add specific requirements for object-oriented modeling languages to be applied in the
area of process modeling.

Rational et al.

This submission is backed by a rather impressive consortium including Rational Software, Mi-
crosoft, Hewlett-Packard, Oracle, Texas Instruments, and Unisys. The proposed "Unified
Modeling Language" (UML) has mainly been developed by Rational Software and has its
roots in three well known object-oriented modeling approaches ([Boo94], [JaCh92],

9

[Rum91]). The material proposed by the consortium is relatively extensive: It includes 13 doc-
uments which cover more than 550 pages. Furthermore, the background of the UML is ex-
plained in various textbooks ([Boo94], [Jac94], [JaCh92], [Rum91], [Der95], [Whi94]), and in
numerous articles. But it is certainly not the sheer volume, why the UML is regarded as a ref-
erence already - often without discussing its qualities. Even within the competing proposals to
the OMG the UML seems to have gained an outstanding position. This may be due to the fact
that it is associated with three protagonists of the object-oriented modeling arena. Furthermore,
it seems that most of the other consortia have accepted the relevance of this proposal, since
they describe how their metalanguages, or metamodels respectively, would allow to specify
parts of the UML (for instance [IBM97], [CeIb97]) - or they restrict their efforts to providing
extensions to the UML (like [Sof97]).

Compared to the previous approaches, the UML is based on, the language description submit-
ted to the OMG is much more comprehensive (fig. 12 gives an impression). Although some
concepts of the original approaches, such as data flow diagrams, which are part of OMT, are
not supported any more, the UML almost appears like a superset of the languages it originates
from. It supports nine types of diagrams. Static aspects can be rendered on various levels of
abstraction. In addition to class or object diagrams, component diagrams serve to map existing
software components and their interrelationships. Deployment diagrams can be used to render
dependencies between runtime systems across various platforms. Collaboration diagrams al-
low to express message flows between objects. Sequence diagrams, state diagrams, and activ-
ity diagrams serve to render various dynamic aspects. Furthermore, the UML provides use
case diagrams as suggested in [JaCh92]. While the variety that comes with those diagrams im-
proves the chances to find a diagram type which is appropriate for a particular view, it can be
a burden at the same time, since some of the diagrams (like sequence diagrams, state diagrams,
and activity diagrams) are overlapping in a subtle way. For a detailed evaluation of the UML
see [FrPr97]. The 1.1 version of the language, released in July 1997, has adopted the OCL from
the IBM/ObjecTime proposal. In addition to the UML and natural language, the OCL is used
to specify the abstract syntax and semantics of the UML ([Rat97d]).

Without any doubt, the UML marks a clear progress compared to its direct predecessors. Nev-
ertheless, it is not completely convincing in the end. It seems questionable whether the extent
and variety of concepts provided with the UML will not confuse the prospective users. It is by
no means easy to learn and use.

3.2 Resume
Our brief analysis was mainly motivated by the following question: Do the proposals give the
impression of a converging and mature field? Considering the different backgrounds and goals
of the various contributors, it is certainly not appropriate to speak of a coherent state of the art.
Furthermore, we do not think that the submissions are a representative selection of object-ori-
ented modeling languages in general: There are numerous other approaches that contribute to
the state of the art as well - from various perspectives (for instance [Mey97], [Coa95],
[GoRu95]). One of them deserves particular attention: The OPEN Modeling Language (OML)
which has evolved from a joint research effort called OPEN ("Object-oriented Process, Envi-
ronment, and Notation"). Different from the companies that submitted their proposals to the
OMG, OPEN is an initiative launched solely within an academic context. OPEN has been de-
veloped further from a number of previous approaches, like [Col89], [Des94], [Fir92],
[Gra91], [HeEd94], [Hen92]. As it is indicated by its name, the members of the initiative clear-

10

ly want the OPEN specifications to become a standard ([FiHe96], p. 4). Nevertheless, they did
not submit the already existing specifications, because they were not able to fulfill some re-
quirements defined by the OMG: A submitting organization has to be a "contributing member"
of the OMG. Additionally, it has to provide a statement about its willingness to make the pro-
posed "technology ... commercially available within 12 months of adoption" ([OMG96], p. 24)
- whatever that means for modeling languages.

Independent from the question how well the OML compares against other approaches (for a
comparison of the UML and the OML see [FrPr97]), the regulations imposed by the OMG
have rather disturbing consequences: They exclude many potential contributors, especially
those with academic intentions, no matter how valuable their proposals might be. Such a pro-
cedure does not only jeopardize the quality of the standard to be established. In addition, it may
also hinder the acceptance of the standard by those who were not able to express their ideas.

4. Open Research Questions

Assuming that modeling languages are of pivotal importance for the way people perceive and
conceptualize real world domains, and how they design software, the design of a general mod-
eling language is a challenging task. This is for various reasons. Firstly, there is variety - both
in domains and in software systems. For instance, there are certainly essential differences be-
tween traffic control systems, vending machines, or marketing information systems. This is the
case for the corresponding terminologies as well as for abstractions used to represent system
features. Additionally, there is an immense variety of people who use a modeling language -
both as readers and writers. Since it can be expected that this variety is accompanied by a wide
range of individual perceptions, conceptualizations, and preferences, it is almost impossible to
design a language that fits the needs of all potential users. Secondly, there are trade-offs. A
modeling language should be easy to use. Its notation should be intuitive, which implies that
it corresponds to the conceptualizations its users prefer. At the same time it should support the
design and implementation of software. At some point, that requires to introduce formal con-
cepts which are suited to be mapped to implementation languages. Furthermore, there is the
well known trade-off between quality, cost, and time. While it is difficult to tell how a model-
ing language relates to this trade-off, we cannot assume that quality, cost, and time are inde-
pendent of the modeling languages used within a project. Thirdly there is arbitrariness. Like
any artificial language, a modeling language should be designed to fit its purpose. However, it
cannot be deduced logically from this purpose. This thought alone implies that arbitrary deci-
sions can hardly be avoided. Furthermore, dealing with trade-offs will usually require compro-
mises that will, to a certain degree, reflect individual preferences rather than objective reasons.

Comparing the current state of the art of object-oriented modeling against those challenges re-
veals a remarkable lack of knowledge. Regarding a modeling language as an instrument for
software development would suggest to start with a thorough requirements analysis which
would include a number of questions, for instance:

• What are the purposes the language is to be used for?

• Who are the prospective users of the modelling language?

• What are the concepts a language should provide in order to fit their cognitive styles?

• How does an intuitive notation look like?

11

There is no doubt that answering these questions requires some sort of empirical research. The
authors of object-oriented modeling methods or languages sometimes emphasize the experi-
ence they have gathered with applying their approach in practice (for instance [FiHe96], p. 9,
or [CeIb97], p. 1). Vendors and consultants have certainly received some kind of feedback
from their customers. However, it is remarkable that up to now there has been no sophisticated
study of how people perceive and deal with concepts and notations of object-oriented model-
ing languages (at least we do not know of any). There have been a few studies on the use of
entity relationship (ER) modeling ([Hit95], [GoSt90]). They indicate that ER models are not
intuitive at all for many people. Our experience, as well as the similarity between object mod-
els and ER models suggest that this is also the case for object-oriented modeling. Approaches
like the UML or the OML, which offer a wide range of different modeling languages, can be
expected to be even less intuitive for many prospective users. Furthermore some concepts fea-
tured by those languages, such as use cases, are difficult to understand. For this reason, apply-
ing them can easily result in bad design (for a detailed analysis of pitfalls see [Ber97]). In other
words: Without substantial knowledge about the way how people perceive and apply modeling
concepts, it is hard to tell whether those concepts contribute to software quality - or to "disas-
ter" ([Ber97]).

Beside the lack of research on user perceptions and preferences, there is a wide range of do-
mains and purposes that suggest the use of modeling languages. To give a few examples: busi-
ness process (re-) design, workflow management, organizational design, enterprise modeling,
design of document management systems, design of integrated circuits, design in the field of
computer telephony integration (CTI). During the last years a lot of special purpose modeling
approaches have emerged in those fields (for instance: [Fra97], [Fra94], [IsSt95], [Oul95],
[Sch95], [Tay95]). While they usually require specialized concepts, many of them are closely
interrelated with object-oriented modeling. For instance: Modeling a business process usually
requires to refer to information specified within an object model. In order to foster integration,
it is helpful to regard documents as objects which require special concepts. None of the mod-
eling languages discussed above includes special concepts to cover one of those domains. Fur-
thermore, one has to take into account that some of those fields are still in a virgin state, al-
though they are of increasing relevance - like business process modeling or enterprise model-
ing. Against the background of standardization, it is important to notice that additional require-
ments for modeling languages can be expected from various evolving areas.

While reusability has been a research topic for long, there are two recent approaches that have
gained remarkable attention: design patterns ([GaHe95]) and frameworks ([LeRo95]). They
promise to deliver reusable artifacts which are rather flexible and/or convenient to use. Never-
theless, there is only little experience about how to integrate them in the process of software
development. This is especially the case for design patterns since they are - by definition - less
formal in nature than frameworks. It seems characteristic that, despite these problems, some of
the approaches discussed in 4.1, and 4.2 already feature concepts to describe design patterns
(for instance: [Rat97a], [FiHe96]) - however, without specifying them in an adequate way (for
instance: [Rat97a] defines a design pattern as "a template collaboration", p. 66).

In order to specify/standardize modeling languages you need metamodels or metalanguages.
Among other things, they should allow for convenient and safe extensions of the correspond-
ing object level languages. At the same time, a metalanguage perspective, as emphasized in
[IBM97] or [Pla97], allows to abstract widely from some problems occurring on the level of a
particular modeling language - like user perceptions or preferences. For this reason it may ap-

12

pear that an approach like the one suggested by [IBM97] provides a satisfactory solution at
least for the metalanguage level. However, this is not the case. Within computer science there
is a wide range of alternatives. Beside general, well known approaches like predicate calculus,
or algebraic specification, there are many special approaches that define representations for
metalanguages to be used for CASE tools or Meta CASE tools respectively (for instance:
[EbWi96], [KeSm96]). While there are requirements for metalanguages, like completeness,
simplicity, and correctness (see [SüEb97], pp. 2), it is still difficult to compare them in an ob-
jective sense: Similar to modeling languages to be used on an object level, metalanguages are
artificial. Therefore they are necessarily arbitrary to some degree. This is an important aspect
for another reason as well: Even with metalanguages you cannot completely neglect cognitive
styles of prospective users: An extensible metalanguage/metamodel is also used by people
who have their own ideas about language concepts and notation - although the group of people
who work on a meta level is much smaller than the group of those who use a modeling lan-
guage on an object level.

The current state of the art is not only lacking knowledge which would be required for the spec-
ification of modeling languages. In addition, it is not evident which scientific discipline is re-
sponsible for filling those gaps. The design of artificial languages as well as the analysis of
their use is an essential topic of linguistics. The interaction between language and cognition is
subject of cognitive psychology. The specification of languages to be used for software devel-
opment is part of computer science. Finally, the definition of concepts suited to describe and
analyze certain real world domains, like business firms, is subject of disciplines like manage-
ment science or organization studies. Considering both, the complexity of the open research
questions and the fact that there is no single discipline to cover those questions in a satisfactory
way, indicates that it will take considerable time before we are able to speak of a mature state
of the art in modeling languages.

5. Concluding Remarks

Our overview of the current state of the art has shown that object-oriented modeling is a still
an evolving field with relevant problems and challenges still to be overcome. In addition, the
field of object-oriented modeling lacks a common focus: There is work on metamodels with
more or less formal rigor, while other approaches focus on the application of modeling lan-
guages. There is also variety in the backgrounds of people working on various aspects of ob-
ject-oriented modeling; to name a few: programming languages, database design, artificial in-
telligence - with motives ranging from purely academic to chiefly commercial.

From an academic point of view software development in general, conceptual modeling in par-
ticular has not reached a level of maturity that would recommend to freeze a certain paradigm
by standardizing corresponding modeling languages. Although there has been considerable
progress during the last years, we still agree with the authors of an open letter to the OMG
([MeSh93]) who, in 1993, advised emphatically against a standardization of object-oriented
modeling methods (which includes the standardization of modeling languages)1:

"Standardization of this rapidly developing technology will be out of date almost immediately.

1. In the meantime some of them, like Booch, Rumbaugh, or Wirfs-Brock, have apparently changed their
mind, since they participated in the preparation of proposals to the OMG.

13

Not only is standardization futile, but, to the extent that it succeeds, positively dangerous.
Standardization will discourage the innovation required to advance and mature the methods."

However, things look different from an economic point of view: There is no doubt that stan-
dards are of crucial importance for establishing integrated information systems. Furthermore
they foster reusability, help to protect investments, and decrease transaction cost. Hence, in the
end it comes down to the trade-off between the benefits of standardized representations and
the pitfalls of investing into premature concepts. This decision is beyond the capabilities of IS
research. It finally happens in market-like settings: If enough players see a chance for an equi-
librium between the incentives and the cost of standardization, a standard may be established.

References

[And96] Anderson, M.J.: Draft Workflow Standard - Interoperability. Abstract Specifica-
tion WFMC-TC-1012, 3-June, 1996

[Ber97] Berard, E.V.: Be Careful With "Use Cases". 1997. Obtained via http://
www.toa.com/pub/html/use_case.html

[Boo94] Booch, G.: Object-oriented Design with Applications. 2nd ed., RedwoodCity, Ca.:
Benjamin Cummings 1994

[CDI96] CDIF: Harmonization of CDIF with other Standards Bodies, 96-07-26, 1996.
Obtained via http://www.cdif.org/intro.html

[CeIb97] Cerrato, J.; Ibrahim, H.: The Ptech Method for Object-Oriented Development
Version 1.0, 1997. Obtained via http://www.omg.org/library/schedule/
AD_RFP1.html

[Coa95] Coad, P.: Object Models: Strategies, Patterns, and Applications. Englewood
Cliffs, NJ: Prentice Hall 1995

[Col89] Colbert, E.: The Object-Oriented Software Development Method: A Practical
Approach to Object-Oriented Development. In: Proceedings of TRI-Ada ’89 -
Ada Technology in Context: Application, Development, and Deployment. New
York: ACM Press 1989, pp. 400-415

[Der95] Derr, K.W.: Applying OMT: A practical step-by-step guide to using the object
modeling technique. New York: SIGS Books 1995

[Des94] Desfray, P.: Object Engineering - The Fourth Dimension. Reading, Mass.: Addi-
son-Wesley 1994

[EbWi96] Ebert, J.; Winter, A.; Dahm, P.; Franzke, A.; Süttenbach, R.: Graph Based Mode-
ling and Implementation with EER/GRAL. Thalheim, B. (Ed.): Proceedings of
the 15th International Conference on Conceptual Modeling. Berlin et al.: Springer
1996, pp. 163-178

[EIA93] CDIF Framework for Modeling and Extensibility, EIA/IS-107, Electronic Indu-
stries Association, November 1993

[Fir92] Firesmith, D.: Object-oriented requirements analysis and logical design. Chiche-
ster 1992

[FiHe96] Firesmith, D.; Henderson-Sellers, B.; Graham, I.; Page-Jones, M.: OPEN Mode-

14

ling Language (OML). Reference Manual. Version 1.0. 8 December 1996. Obtai-
ned via http://www.csse.swin.edu.au/OPEN/comn.html

[FrHa97] Frank, U.; Halter, S.: Enhancing Object-Oriented Software Development with
Delegation. Arbeitsberichte des Instituts für Wirtschaftsinformatk, Nr. 2, Koblenz
1997

[FrPr97] Frank, U.; Prasse, M.: Ein Bezugsrahmen zur Beurteilung objektorientierter
Modellierungssprachen - veranschaulicht am Beispiel von OML und UML.
Arbeitsberichte des Instituts für Wirtschaftsinformatk, Nr. 6, Koblenz 1997

[Fra97] Frank, U.: Enhancing Object-Oriented Modeling with Concepts to Integrate Elec-
tronic Documents. In: Proceedings of the 30th HICSS, vol. VI, ed. by R. H.
Sprague, Los Alamitos, Ca.: IEEE Computer Society Press 1997, pp. 127-136

[GaHe95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Reading/Mass. et al.: Addison-Wesley 1995

[GoRu92] Goldberg, A.; Rubin, K.S.: Object Behaviour Analysis. In: Communications of
the ACM. Vol. 35, No. 9, 1992, pp. 48-62

[GoSt90] Goldstein, R.C.; Storey, V.C.: Some Findings on the Intuitiveness of Entity Rela-
tionship Constructs. In: Lochovsky, F.H. (Ed.): Entity Relationship Approach to
Database Design and Query. Amsterdam: Elsevier 1990

[Gra91] Graham, I.: Object-Oriented Methods. Wokingham et al.: Addison-Wesley 1991

[HeEd94] Henderson-Sellers, B.; Edwards, J.M.: Book Two of Object-Oriented Know-
ledge: The Working Object. Object-Oriented SoftwareEngineering: Methods and
Management. Sidney et al.: Prentice Hall 1994

[Hen92] Henderson-Sellers, B.: A Book of Object-Oriented Knowledge: Object-Oriented
Analysis, Design and Implementation. A new Approach to Software Engineering.
Englewood Cliffs, NJ: Prentice Hall 1992

[Hit95] Hitchman, S.: Practitioner Perceptions on the Use of some Semantic Concepts in
the Entity Relationship Model In: European Journal of Information Systems, Vol.
4, 1995, pp. 31-40

[IBM97] IBM; ObjecTime Limited: OMG OA&D RFP Response Version 1.0. 1997. Obtai-
ned via http://www.omg.org/library/schedule/AD_RFP1.html

[ISO90] ISO/IEC1990 IRDS Framework. ISO/IEC-Standard 10027. 1990

[IsSt95] Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: A Methodology for Struc-
tured Hypermedia Design. In: Communications of the ACM, Vol. 38, No. 8,
1995, pp. 34-44

[Jac94] Jacobson, I.; Ericsson, M.; Jacobson, A.: The Object Advantage. Business Pro-
cess Reengineering with Object Technology. Wokingham et al.: Addison-Wesley
1994

[JaCh92] Jacobson, I.; Christerson, M; Jonsson, P; Overgaard, G.: Object-Oriented Engi-
neering. A Use Case Driven Approach. Reading, Mass.: Addison-Wesley 1992

[KaCh92] Kain, J.B.; Christopherson, M. et al.: Object Analysis and Design. OMG Docu-

15

ment 92-10-01.PDF, draft 7.0, 1992. Obtained via http://www.omg.org/library/
public-doclist.html

[KeSm96] Kelly, S.; Smolander, K.: Evolution and issues in metaCASE. In: Information and
Software Technology. Vol. 38 (Special Issue: Method engineering and meta-
modelling), No. 4, 1996, pp. 261-266

[LeRo95] Lewis, T.; Rosenstein, L. et al. (Eds.): Object Oriented Application Frameworks.
Greenwich, CT: Manning 1995

[MeSh93] Mellor, S.J.; Shlaer, S.; Booch, G.; Rumbaugh, J.; Salmons, J.; Babitsky, T.;
Adams, S.; Wirfs-Brock, R.J.: Premature methods standardization considered
harmful Open Letter to the Industry In: JOOP, Vol. 6, 1993, No. 4, pp. 8-9

[Mey97] Meyer, B.: Object-Oriented Software Construction. 2nd Ed., Englewood Cliffs:
Prentice Hall 1997

[OMG96] Object Management Group: Object Analysis & Design RFP-1, ad/96-05-01,
1996. Obtained via http://www.omg.org/library/public-doclist.html

[Oul95] Ould, M.A.: Business Processes: Business Processes: Modelling and Analysis for
Re-Engineering and Improvement. Chichester et al.: Wiley 1995

[Pla97] Platinum: Object Analysis and Design Facility Response to OMG/OA&D RFP-1.
Obtained via http://www.omg.org/library/schedule/AD_RFP1.html

[Rat97a] Rational: UML Semantics. Version 1.0, 02-13-97, 1997. Obtained via http://
www.rational.com

[Rat97b] Rational: UML Notation Guide. Version 1.0, 02-13-97, 1997. Obtained via http:/
/www.rational.com

[Rat97c] Rational: UML Summary.0, 02-13-97, 1997. Obtained via http://www.ratio-
nal.com

[Rat97d] Rational: UML Semantics. Version 1.1 alpha R6, 07-21-97, 1997. Obtained via
http://www.rational.com

[Ree95] Reenskaug, T.: Working with Objects: The OORAM Software Engineering
Method. Englewood Cliffs: Prentice Hall 1995

[Rum91] Rumbaugh, J. et al.: Object-oriented Modelling and Design. Englewood Cliffs,
N.J.: Prentice Hall 1991

[Sch97] Schnur, B.: Objektorientierung in Versicherungsunternehmen. Die Branche gibt
sich bislang noch zurückhaltend. In: Informatik Spektrum,Vol. 20, No. 1, 1997,
pp. 52-53

[Sch95] Schwabe, D., Ross, G.: The Object-Oriented Hypermedia Design Model. In:
Communications of the ACM, Vol. 38, No. 8, 1995, pp. 45-48

[Sof97] Softeam: Submission of the specification of Object Analysis & Design Facility
OMG RFP response, 1997. Obtained via http://www.omg.org/library/schedule/
AD_RFP1.html

[SüEb97] Süttenbach, R.; Ebert, J.: A Booch Metamodel. Fachberichte Informatik, 5/97,
Universität Koblenz 1997

16

[Tas97] Taskon: The OOram Meta-Model - combining role models, interfaces, and classes
to support system centric and program centric modeling. A proposal in response
to OMG OA&D RFP-1, 1997. Obtained via http://www.omg.org/library/sche-
dule/AD_RFP1.html

[Tay95] Taylor, D.A.: Business Engineering with Object Technology. New York et al.:
Wiley 1995

[Wak93] Wakeman, L.: PCTE: The Standard for Open Repositories. Foundation for Soft-
ware Engineering Environment. New York et al.: Prentice Hall 1993

[WFM96] WfMC (Workgroup 1): Interface 1: Process Definition Interchange WfMC TC-
1016, Version 1.0 Beta, May 29, 1996. Obtained via http://www.aiai.ed.ac.uk/
WfMC/ 1996

[Whi94] White, I.: Using the Booch Method - A Rational Approach. New York et al.: Ben-
jamin Cummungs 1994

[WiWi90] Wirfs-Brock, R.J.; Wilkerson, B.; Wiener, L.: Designing Object-Oriented Soft-
ware. Englewood Cliffs, NJ.: Prentice Hall 1990

