
1

Abstract

The paper presents a conceptual framework as well
as a design environment to develop object-oriented
enterprise models. It helps to coordinate the design
of a business information system with the modelling
of corporate strategies and organizational (re-) de-
sign. For this purpose the framework introduces
concepts for illustratively modelling and integrating
three main views on the enterprise. The views focus
on corporate strategy, business (process) organizati-
on, and information system design. Thereby the me-
thodology contributes to overcome the communica-
tion barriers that commonly exist between the diffe-
rent views. The integration of the various stages of
system development is promoted by linking con-
cepts of different views. Since business information
systems are usually not built from scratch the metho-
dology provides means for integrating existing soft-
ware or data structures. The development environ-
ment that is based on the framework allows the user
to navigate through the views of an enterprise model
on various levels of detail. It maintains a model’s in-
tegrity and allows for simulation and fast prototy-
ping.

1 The Need for Models of the Enterprise

Designing, implementing and maintaining business
information systems faces a number of challenges.
On the software level it is - among others - desirable
to support integration on a high level of semantics,
to foster integrity and to allow for convenient reuse
of existing artifacts. Penetrating a company with

information technology allows for or may require
new ways to organize the business. During the last
years different aspects of this problem have been
addressed by a variety of approaches. They are
related to notions like “paperless office”, “lean
management” or “business (process) re-engineer-
ing” ([Hammer 93], [Talwar 93]). Reorganizing a
firm or parts of it should be compatible with its long
term goals. On the other hand the range of strategic
options is more or less influenced by the available
information technology - no matter whether you
regard it as a “strategic weapon” ([Porter/Millar
85], [Wiseman 85]) or as a constraint.

The various approaches to deal with those different
challenges usually have one characteristic in com-
mon: they are based on models - either of the whole
enterprise or of parts of it. It has been well accepted
for long that conceptual models are crucial for
designing and implementing integrated information
systems. While those models used to be data-ori-
ented, object-oriented design methodologies are
currently gaining more and more attention. Method-
ologies to support the analyst with business re-engi-
neering are usually based on models as well. They
are mainly focused on business processes ([Daven-
port 90], [Dennis 94]). Furthermore there is a wide
range of models to help with analyzing and shaping
a firm’s strategy. They usually stress a more
abstract view with highly aggregated data (for an
overview see [Hassey 92] and [Scott Morton 86]).
[Keen 91] explicitly promotes the use of informa-
tion technology to develop corporate strategies. All
these models have been introduced to reduce the
complexity of strategic planning in order to help the
analyst to concentrate on the essentials - and to
communicate them to others who should be
involved.

It is no surprise that strategic, organizational and
information system models are usually based on

MEMO: A Tool Supported Methodology for Analyzing and (Re-) Designing
 Business Information Systems

Ulrich Frank
Institut für Wirtschaftsinformatik, Universität Koblenz

Rheinau 1, 56075 Koblenz, Germany
Email: ulrich.frank@informatik.uni-koblenz.de

Published in: Ege, R.; Singh, M.; Meyer, B. (Eds.):
Technology of Object-Oriented Languages ans Sys-
tems. Englewood Cliffs 1994, S. 367-380

2

different concepts. However, treating these differ-
ent aspects independently bares the risk of redun-
dant work and friction - a well known phenomenon
for long. In order to allow for a more synergetic
approach a number of authors ([Zachman 87],
[ESPRIT 91], [Katz 90], [Sowa 92], [Peters 93])
have suggested enriched modelling frameworks -
often named “enterprise modelling” (a term which
is however not used in a unique way). Such method-
ologies differentiate between a number of views on
the enterprise and intend to capture the relationships
between these views. Studying them however
shows that they either remain on a rather abstract
level (for instance: [Sowa 92], [Zachman 87]) or
lack sophisticated concepts - both from a manage-
rial and a software engineering point of view (they
are usually rather data- than object-oriented).

This paper presents a methodology as well as a set
of integrated tools for developing object-oriented
enterprise models that cover the main aspects of
analyzing, designing, implementing and maintain-
ing business information systems. It puts special
emphasis on the following aspects:

• Different ways to conceptualize an enterprise in
an illustrative way, called perspectives or views,
are supported.

• An object-oriented design methodology that is
specially suited for modelling business informa-
tion systems.

• Concepts to support the integration of existing
components, like applications or data structures,
are provided.

• A systematic approach to analyze a firm’s com-
petitive position and to generate strategic
options is included.

• There is support for (re-) designing information
intensive business processes.

• An enterprise model can be very complex. How-
ever, for economic reasons there may be the
need to be less ambitious - both in extent and
detail. Therefore the methodology can be
adapted to the constraints of a specific project.

• The development environment provides various
ways of browsing through an enterprise model
and maintaining its integrity. It also allows for
fast prototyping and simulation.

2 Multi Purpose Enterprise Modelling

Inspired by the vision of highly integrated business
information systems and additionally motivated by

the various problems with existing systems a group
of researchers at GMD started in 1990 to develop
scenarios of how to deal with this complex chal-
lenge. Very soon it became obvious that it was a
key issue to design multi-view models of the enter-
prise - mainly inspired by the framework presented
in [Zachman 87]. We decided on three main views.
The strategic view was to model the enterprise in a
way that fits the perception common to senior exec-
utives. It should allow for illustratively describing a
firm’s competitive position and its strategic options.
The organizational view was to be focussed on a
company’s organizational structure and the way its
tasks/processes are performed. The information sys-
tem view should provide the basic modelling con-
structs (in other words: the meta model for model-
ling) together with a framework to analyze existing
systems and (re-) design and maintain them.

The methodology that has been developed in the
following years - called Multi Purpose Enterprise
Modelling (MEMO) - provides the analyst with var-
ious concepts to describe each view. The concepts
are presented on different levels of detail and preci-
sion: a conceptual framework, guidelines to develop
scenarios (mainly to describe tasks/processes), heu-
ristics that help to identify important aspects, struc-
tured questionnaires to guide interviewing, and tem-
plates to gather formal aspects.

There are three dimensions to structure each of the
three main views. Stage serves to describe a particu-
lar model’s position within the continuum between
analysis, design and maintenance. Each view is
described in terms of the required resources, the
operations or processes, the results which are pro-
duced, and the relevant features of external systems.
This dimension is called focus. Usually it is desir-
able to model a view on a high level of abstraction.
However, for certain types of analysis you may
need to consider the state of instances. Within this
dimension, called aggregation, MEMO allows the
analyst to use concepts (like classes), particular
instances and so called prototypical instances which
represent the average state of a relevant set of
instances (like the salary of the “average clerk”).

2.1 The Strategic View

A methodology to guide analysis and design of cor-
porate strategies should be suited to represent the
required concepts in a way that is familiar to those
who are commonly dealing with strategic planning -
like senior executives. It should be based on gener-
alized assumptions and should also allow to be con-

3

figured/specialized to a particular firm’s needs.
Among the wide range of methodologies (see [Scott
Morton 86]) we found Porter’s value chain
approach to be most appropriate. Due to the com-
plexity and contingency of the domain the method-
ology does not offer a precise guideline for devel-
oping strategies. However, Porter’s approach pro-
vides the analyst with familiar concepts which sup-
port him to develop a solution of his problem in a
systematic way. The value chain concept has gained
a high degree of acceptance with many companies
and consultants.

On the top level Porter models an enterprise as a
system of “activities” which form a “value chain”.
"The value chain disaggregates a firm into its strate-
gically relevant activities in order to understand the
behavior of costs and the existing and potential
sources of differentiation. A firm gains competitive
advantage by performing these strategically impor-
tant activities more cheaply or better than its com-
petitors." ([Porter 85], p. 33) Primary activities are
directly involved in the process to produce the prod-
ucts or services that are offered to a firm’s custom-
ers. They include inbound logistics, operations, out-
bound logistics, marketing and sales and service.
Support activities (firm infrastructure, human
resource management, technology development and
procurement) serve to support primary activities.
An activity is an abstraction of actual business pro-

cesses. Therefore it does not have to directly corre-
spond to a specific process (for a detailed descrip-
tion see [Porter 85]).

In order to adapt Porter’s approach to the MEMO
framework we applied the three dimensions stage,
focus and abstraction to it. There are two outstand-
ing stages - with an arbitrary number of intermedi-
ate stages: the current competitive position and the
position aimed at with the future strategy.
Resources - like various types of capital or human
resource - are used to perform activities. They are
described on a high level of aggregation with
emphasis on cost and quality issues. The outcome
which is produced by an activity is modelled on a
similar level - with aggregated figures for quality
and price. Processes are basically described as a
chain of activities with each activity characterized
by the resources it consumes and its outcome. This
results in a value chain being modelled as a graph of
activities, resources, and outcomes with special
emphasis on the interrelationships.

The relevant external world consists of more or less
detailed value chains of competitors, suppliers and
customers. In order to support the shaping of a
firm’s value chain the analyst is provided with heu-
ristics like “How can the activity be performed dif-
ferently or even eliminated?” or “How can a group
of linked value activities be reordered or
regrouped?” ([Porter 85], p. 110).

accountantsmanagement clerks programmerssales personal

capital technologyhuman resources

social skillstechnical knowl- goal orientation experiencecost awareness

low
average

high

inbound logistics operations outbound logistics

Figure 1. An example for the analysis of resources within the strategic view

4

Additionally Porter offers a top down approach that
suggests to start with one out of a list of “generic
strategies” and stepwise specialize it into a new
value chain.

It is obvious that both analyzing and designing a
value chain require special attention to the interrela-
tionships, which Porter calls “linkages” ([Porter
85], p. 50): "Managing linkages thus is a more com-
plex organizational task than managing value activ-
ities in themselves." While the methodology cer-
tainly does not allow for automatically generating a

firm’s value chain, it can well be mapped to a spe-
cialized browser (see 3). The concepts used to
describe the strategic view are represented in an
object-oriented way according to the meta model
characterized in 2.3.

2.2 The Organizational View

On the organizational level an enterprise model
comprises a model of the organizational structure
and models of business processes - both for analyz-
ing the given state and for designing future states.

Organizational Context

Department, Team, Position

Figure 2. Conceptualization of business processes

Control

Decision rules, Exceptions,
Execution Times

States

of Objects, Forms and Files

Information

Objects, Services, Forms,
Fields, Files

Communication

 Locations, Actors, Channels,
Frequency, Duration

State of the virtual

Activity

procedure document

Process Types

5

The organizational structure is represented by orga-
nizational units (such as divisions, departments,
groups, positions etc.) and their relationships
(“reports to”, “is part of” etc.). In addition to model-
ling a particular structure MEMO encourages the
analyst to identify general rules for the division of
labor and its coordination. Organizational resources
are usually modelled as prototypical instances.
Examples for resources on this level are people,
buildings, furniture, machinery etc. Computer hard-
ware may also be considered as resource within the
organizational view. It is described by referring to
the information system view (see below). Features
which may be described within prototypical
instances include various types of cost, availability,
capacity etc. The number of resources and the detail
of their description is subject to individual configu-
ration. The external world is represented by relevant
roles (like lawyer, consultant, customer, etc.) and
services.

A business process is modelled as an ordered graph
of subprocesses, where a subprocess in itself can be
decomposed into other subprocesses. MEMO’s
emphasis is on office procedures. Therefore the
“material” that is operated on is information. Infor-
mation is grouped into three categories: objects
which reside on the computer based information
system, forms, and files. Information that is located
in the information system is described by referring
to the object model that is part of the information
system view (see below). Forms have a formal
structure, that is they contain fields, have well
defined states (like ’complete’, ’incomplete’, ’con-
sistent’), and a set of constraints defines the permis-
sible operations. Their content may be changed
within a subprocess. The term file is used to sum-
marize documented information that is read-only -
like office files, letters or journals. The information
a business process operates on is gathered in a “vir-
tual procedure document” that extends the tradi-
tional notion of a document in two respects: It may
contain references to information that is located
somewhere else. Furthermore it can be duplicated
and thereby processed in parallel. Each subprocess
is triggered by a certain state of the virtual proce-
dure document and produces one or more new
states.

Each process is assigned an organizational context
by referring to the organizational units which are
responsible for its execution. By default the organi-
zational context is propagated to the subprocesses
where it may be overwritten. Furthermore each pro-

cess can be characterized by business rules like:
“All subprocesses should be managed by the same
person.” The subprocesses can be described in a
very detailed way - depending on the effort that is to
be spent for analysis. Among the more important
features are: minimum and maximum execution
time, decision rules, required resources (for
instance: copy machine, printer), exceptions, people
(roles) needed to communicate with, communica-
tion media etc. In order to support the re-design of
business processes MEMO provides the analyst
with means to analyze existing processes and
design heuristics. The model of a business process
allows the analyst to detect media frictions (for
instance: information that originally resides in the
information system and is then being transferred to
a form), to identify bottlenecks, or to draw commu-
nication nets. By adding statistical data on work-
load, capacity and probabilities of the subprocesses’
possible outcome the model can be utilized to per-
form simulations (see fig. 8).

By focussing on processes the organizational model
serves different purposes: It helps to redesign the
business (if necessary), it helps to define the com-
munication technology required to improve effi-
ciency, and - last but not least - it supports to iden-
tify the objects/classes required to perform the rele-
vant tasks. As with the strategic view the concepts
of the organizational view are described with the
object-oriented meta model (see below) in mind.
Therefore they can be represented as an object
model which fosters their mapping on a tool.

2.3 The Information System View

The information system view includes both a model
of the existing system and the system that is to be
designed. They are separated into an object-oriented
conceptual model and a model of information sys-
tem resources (like hardware, networks, operating
systems). An object-oriented conceptual model
includes an object model and other models to
express dynamic aspects. Among the still increasing
number of object-oriented design methodologies (in
a survey we did last year we found more than forty
approaches) we felt most inspired by the ones pro-
posed by [Booch 90], [Rumbaugh et al. 90], and
[Jacobson et al. 92]. However, none of them was
satisfactory for our purpose. While Rumbaugh et
al.’ methodology suffers from being somewhat
superficial and not consequently object-oriented,
Booch’s approach seems to be overloaded by
details of various programming languages - which,

6

in our opinion, should not be part of a general meth-
odology for the design of conceptual models.
Jacobson et al. are primarily focussing on analysis
and put less emphasis on software engineering
issues occurring during design. (for a comparison of
important methodologies see [Frank 93], [Hong
93], [Monarchi 92]). Furthermore we were not sat-
isfied with the way dynamic aspects are modelled
within these approaches. State transition diagrams
are often suggested to capture dynamic aspects. At
first sight such diagrams seem to be appropriate for
modelling automated business processes, since they
allow the analyst to describe events and correspond-
ing state changes. They are however restricted to
events and state transitions which may occur during
the lifetime of objects of one class. Within an office
procedure however one usually needs objects of
more than one class.

2.3.1 Conceptualizing Object Models

While from a (re-)using programmer´s point of
view it is sufficient to describe an object solely by
the services it provides analysis and design require
a more detailed view. Within an object model one
defines classes and associations between classes or
between objects respectively. Like in most other
methodologies the outstanding features of a class
are attributes and services. An attribute is regarded
as an object that is encapsulated within an object.
We do not allow attributes - like [Coad 91] - to only
hold references to external objects that have an
existence of there own in the object space. An
attributes semantics is primarily defined by its class.
Furthermore a cardinality (using min-max notation)
may be assigned. Assigning a default value allows
for generating appropriate initialization operations.

Class

Name

Superclass

Comment

Value Set

Attribute

Service

Association

Trigger

Guard

State

Name

Comment

Parameter

Output

Precondition

Postcondition

Exception

Access-Priv.

Label

Name

InverseName

Type

Inverse-Type

Class

Cardinality

Name

Comment

Class

Cardinality

Default-Value

Access-Priv.

History

Label

Name

Invariant

Name

Event-Action

0,1

0,1

0,1

0,*

0,*

0,*

0,*

0,*

1,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

0,1

0,*

0,1

0,1

0,1

0,*

1,1

0,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

Figure 3. Part of the meta model for conceptualizing object models

Default View
0,*

7

Each attribute is also characterized by a history-
flag. Setting it to true means that every update
should be recorded somehow.

In order to allow for generating prototypical user-
interfaces it is possible to assign a default-view to
each class. A default view is either a widget or a
collection of widgets. One can also define a label
that is to be presented with the default view. Addi-
tionally features like size and font may be specified.
This approach is a first attempt to deal with the
complexity of user interaction. It cannot be com-
pletely satisfactory: the way a value of a certain
class is presented to the user often is not unique but
varies with the context of interaction.

In order to specify a service the designer may
describe a list of input-parameters (which can be
empty) where each parameter is characterized by its
class and its name. If a service returns a result it has

to be exactly one object. So it is sufficient to define
the class of this object. It is important to note that
such an object may be a composed object (like an
array, a container etc.) that contains many other
objects. A precondition in general specifies condi-
tions "under which a routine will function properly"
([Meyer 88], p. 114). In our model it can be defined
by referring to object or parameter states. For
instance: For a service that requires an object of
class ’Person’ as a parameter it may be necessary
that the service ’sex’ delivers the state ’male’.

A postcondition has to be fulfilled after the service
has terminated. Similar to a precondition it can be
defined by referring to an object state or to a state of
the object that is returned by the service. Each ser-
vice can be assigned a set of exceptions (like media
errors) which should be named in a unified way for
a whole object model. Thereby exception handling
can be defined for all involved objects in the same
way.

During the life time of an object there may be cer-
tain events and rules which go beyond the scope of
a single service. For this purpose we introduce trig-
gers and guards. A trigger can be generally defined
as a tupel consisting of an event and an action. The
event is specified by a condition that in turn is
defined by referring to attribute states or states of
objects which are returned by a service. The action
is defined by the service that has to be executed
when the event occurs.

ProcedureSupervisor

RiskEvalua-

InsuranceSupervisor

Manager

Employee

Clerk

Object Model
Repository

uses

controls

Figure 4. Integration of object model and office procedure models within an enterprise-wide repository

ProcedureManager

ProcessModels

ClaimsProcessing-

To give an example for a trigger: Whenever an
object of class ’customerAccount’ has a balance
less than x, the object should execute a service that
is suited to notify somebody who is managing the
account. A guard is a condition that has to be ful-
filled during the lifetime of any object of a particu-
lar class (similar to what [Meyer 88], p. 124) calls
"class invariant"). For instance: The value of
attribute ’retailPrice’ within objects of class ’Prod-
uct’ should never be lower than the value of
attribute ’wholesalePrice’.

8

Every class may have exactly one superclass.
Although there are a number of arguments in favor
of multiple inheritance we restricted our model to
single inheritance. We found that in most cases sin-
gle inheritance is satisfactory while multiple inher-
itance increases the complexity of an object model
and thereby makes it more difficult to maintain it in
a consistent way. On the instance level MEMO dis-
tinguishes between two types of associations: inter-
action and aggregation. However, for a conceptual
object model to be illustrative it is desirable to
allow for a more detailed differentiation. For this
reason each association has to be assigned a domain
level identifier. Such identifiers do not include any
semantics, they only improve readability of the
model and allow for enhanced retrieval capabilities.

In order to allow for smoothly integrating existing
elements - like applications or data structures -
MEMO suggests that the modeller regards them as
objects. Application classes are subclasses of the
class “Application” that provides attributes and ser-
vices to manage information like installation date,
version, cost etc. An application class is usually
modelled by the set of services it offers to the out-
side (which is rather poor for the average legacy
application) and details about the communication
protocol (for instance: OS-call, RPC, UDP or
CORBA). Existing data structures, such as relation
types of an RDBMS or a document file of a word
processor, are represented as dummy classes: They
do not encapsulate any attributes, instead they offer
services that allow to access an existing element.
For instance: class ‘WordDocument’ represents
documents produced by a certain word processor. In
order to integrate them with a more sophisticated
model one can use an association with the reserved
name “corresponds to”. For instance: “RelTypeCus-
tomer corresponds to Customer” or “WordDocu-
ment corresponds to CompoundDocument”. Some
existing applications use data that might be shared
with other objects. Whenever such a potential
source of redundancy is discovered it can be
expressed in the model using an association with
the reserved name: “should use”. For instance:
“AccountingSystem should use Customer”. To
avoid confusion about the implementation state of a
model it is important to assign one of four pre-
defined states to each class: “not implemented”,
“implemented”, “dummy”, “encapsulated”. Fig. 3
gives an overview of the concepts proposed for
designing object models. For a more comprehensive
documentation see [Frank 92], [Frank 94].

2.3.2 Modelling dynamic aspects

A methodology for modelling dynamic behavior
should allow for conveniently expressing temporal
and control (in other words: dynamic) aspects. It
should also help to avoid inconsistencies, like non
terminating cycles, tasks which cannot be reached
by any chance, deadlocks, etc. Unlike the object-
oriented methodologies mentioned above Peters
and Schultz [Peters 93] propose a modelling tech-
nique that allows for including objects of more than
one class. They use Petri nets where each transition
represents a state transition of an object of a particu-
lar class. Different transitions within a net may rep-
resent objects of different classes. Furthermore they
allow - different from traditional concepts - transi-
tions to have an execution time larger than zero.
Mapping transitions to operations of an object of a
certain class is attractive from a software-engineer-
ing point of view since it supports the idea of build-
ing procedures by ’glueing’ objects together (as it is
proposed in [Nierstrasz 90]). Nevertheless such an
approach has its deficiencies, too. It is important for
a model to allow for direct correspondence to famil-
iar conceptualizations of the relevant domain. Busi-
ness processes are not necessarily structured in a
way that there is always only one object operated on
within a subtask.

The approach we have chosen is similar to the one
suggested by Peters and Schultz in that we also use
semantically enriched Petri nets and allow transi-
tions to have an execution time larger than zero.
Our methodology however allows to explicitly
assign objects of many different classes to one tran-
sition. The information system model of a process is
very similar to the model of a business process
within the organizational level - and in fact may be
deducted from it. The main difference: On the infor-
mation system level a process is described only by
its automated parts. That implies tighter constraints
on the specification of the information being pro-
cessed: only information that is represented in the
object model can be regarded.

In order to provide the model with prototyping
capabilities it is necessary to enhance it with infor-
mation about a suitable user-interface. This infor-
mation can be deducted from those services
assigned to a subtask. The widgets needed to inter-
act with the services can be looked up in the object
model (see above). Since every suitable class in the
object model should have a default view assigned to
it, a prototypical user-interface for an activity can
be generated.

9

level of aggregation level of formalization

Resources Operations Results/ External System

Strategy

Organization

Information System

longterm

competitive

competitors

customers

suppliers

primary/support
human
capital

technology
edge

profits/losses

people
machinery

tasks
business

customers
suppliers
partners

productivity
motivation

qualitycostprocesses

services

processes
hardware
networks

OS
Objects

standards

customers
suppliers

productivity
reliability

maintainability
integrity

Figure 5. Selected concepts of different views and foci

Success Factors

activities

Procedure models are integrated with an object
model in two ways. First they refer to the objects
they use, second the management of an office pro-
cedure is done by objects that are specified within
the object model themselves. Fig. 4 shows how an
object model and office procedure models could be
represented within an enterprise-wide repository.

2.4 Integrating the Views

While it might be an intriguing vision to deduct the
model of the information system from the organiza-
tional model and the organizational model from the
strategic model, we did not even try to accomplish
such a level of integration. This is mainly for two
reasons. First: there is hardly general knowledge of
how to deduct the organizational concept best
suited to accomplish a strategic goal (which is also
the case for the relationship between organizational
model and information system model). Second:
usually a strategy cannot be developed indepen-
dently from organizational options which in turn are
influenced by information technology as well. For
those reasons MEMO allows one to explicitly link
concepts on different levels. Direct tight coupling is
the case, if a concept of a certain view directly cor-

responds to a concept of another view. For instance:
The concept “Customer” within the organizational
view corresponds to the class “Customer” within
the information system view - although the repre-
sentations may vary in detail.

The other extreme would be indirect weak coupling.
For instance: The goal “customer satisfaction” on
the strategic level could be first linked to a model of
the firm’s order processing on the organizational
level. From there one could establish a link to
objects within the information system view that
provide services compatible with certain EDI-stan-
dards.

3 MEMO-Center: The Design Environment

Designing enterprise models according to the pro-
posed methodology can hardly be accomplished
without appropriate tools: A complex model
requires support for browsing and searching.
Because of multiple integrity constraints mainte-
nance that is solely done manually jeopardizes a
model’s consistency to an unacceptable extent.
Finally it is impossible to do without tools when
prototyping is to be accomplished. For these rea-
sons we developed an environment based on the

10

MEMO framework. It was implemented using
Smalltalk-80 within the Objectworks® 4.0 environ-
ment on Sun4-workstations. High productivity
could be achieved by using additional class libraries
(see [Frank 92] for more details). The current ver-
sion runs under Objectworks® 4.1 and Visual-
Works® - on all platforms the appropriate Parc
Place Smalltalk machine is available for.

The environment consists of three main tools: The
Value Chain Designer (VCD) serves to design and
analyze models of a firm’s value chain. The Object
Model Designer (OMD) supports the specification
of object models. It provides various features to
search for certain elements of an object model and
to browse through the model. The Workflow
Designer (WFD) allows for conveniently modelling
business processes. It provides functions for simula-
tion, fast prototyping and organizational analysis.
The three tools are tightly integrated. The integra-
tion on the conceptual level has already been char-
acterized above. System integration is accom-

plished by locating the tools within one Smalltalk
image. The concepts managed by the tools can be
annotated by using an integrated hypertext system.

The VCD provides a browser through the different
elements of a value chain. The description of proto-
typical instances (like “human resource”) is sup-
ported by predefined value sets (like “high”, “aver-
age”, “low”) which can be modified interactively.
This is the case, too, for relationships between
activities. They can be characterized using an exten-
sible list of identifiers (like “supports”, “supported
by”, “contains”, etc.). In addition to a textual repre-
sentation relationships can be visualized in a graph-
ical way. Items managed within the VCD can be
associated to related items within the other tools.
For instance: ”activity uses business process”. The
VCD controls referential integrity of a value chain.
Furthermore it provides dialogs to guide with ana-
lyzing and re-designing a value chain.

Figure 6. User-interface of the Object Model Designer

11

According to the meta model described above the
OMD offers a number of different levels of abstrac-
tion. On the highest level class names are grouped
into categories. On the next level a class can be
assigned a list of attribute names, service names,
guard names, and trigger names. Selecting an
attribute, service, etc. causes the corresponding
window to pop to the front. It allows for a more
detailed description. Fig. 6 shows the window that
contains the template for specifying an attribute -
’dateOfBirth’ in the given example. Its class is
’Date’. The services which are provided by this
class are shown in a listbox. If one of these services
is needed for the class that is currently selected
(which is ’InsuredPerson’ in our example) it can be
pasted to the services-listbox of this class - a conve-
nient way to accomplish reusability. The OMD will
then establish a reference to this service.

In order to foster system integrity it is not possible
to type in a class name directly to characterize an
attribute, a superclass, or a parameter. Instead it is
required that the dictionary that contains all class
names is updated first. Then the name can be pasted
to the corresponding field. The OMD controls a
number of integrity constraints. It prevents the user

from deleting elements which are referenced by
other elements, from assigning superclasses or
classes of attributes in an inconsistent way, etc. The
graphical representation of the class hierarchy can
be used as an additional browser. The icons are
mouse sensitive and cause the focus to shift to the
selected class.

The main focus of the WFD is on business pro-
cesses - both for analysis (that is mainly the organi-
zational view) and design (organizational and infor-
mation system view). On the highest level of
abstraction the user can draw a business process
picking from predefined icons within a specialized
editor. When the procedure is described on this
level (see fig. 7), the user can ’zoom’ into it by
selecting an icon - either a subtask or a document
state. Within the example shown in fig. 7 the sub-
task ’Verification of substantial matter’ is selected.
Within the window titled ’Activity’ it can be char-
acterized by assigning execution times, an organiza-
tional unit, an organizational position, and possible
exceptions. Furthermore the classes (like ’Insured-
Person’, ’Policy’, etc.), forms, and files which are
needed as well as the involved roles can be listed in
this window.

Figure 7. User-interface of the Workflow Designer

12

Selecting an item causes a window with an appro-
priate template to pop to the front. Within the exam-
ple shown in fig. 7 this is the window in top right
position. It allows to pick the required services from
the selected class. For each service - or the object it
delivers respectively - it can be specified what it is
needed for: either for a form or for communicating
with an involved person. The example shows that
the service ’profession’ is needed for the ’Applica-
tionForm’ as well as for communicating with the
’InsuredPerson’ and the ’Expert’.

Other templates exist to specify the relevant infor-
mation within forms (fields together with an infor-
mal description of their purpose) or files (physical
location, subject of interest within the file) and as
well as the communication with involved persons
(channel, subject). These specifications are used to
generate a protocol which is shown in the right bot-
tom corner of the ’Activity’ window in fig. 7.
Another text-widget within this window presents a
template that can be filled to describe decision rules
relevant for the focussed activity. A selected docu-
ment state is specified in a similar way. First the
classes, forms, and files which are involved in this
state are assigned to it. Then these items have to be
characterized in a more detailed way. The state of
an object (which is represented by the name of its
class) has to be defined by naming a boolean ser-
vice that checks this state. That requires one to

enhance the class with this service by switching to
the OMD. For instance: An object of class ’Policy’
is required to be in state ’valid’. That requires a ser-
vice like ’isValid’ to be specified for this class. For
every form it has to be defined which fields have to
be filled in. A file is characterized by its physical
location and optionally the means of transportation
to get it to the clerk. In order to support the user and
to avoid inconsistencies the classes, forms and files
assigned to a document state are pasted to the sub-
task that is triggered by this state. The WFD can
generate a prototypical user-interface for every
activity - provided the default views have been
assigned to the corresponding classes in the object
model (see above). The widgets placed within such
an interface may be rearranged interactively. In
order to use the simulation features built into the
WFD it is necessary to first assign probabilities
(using percentage values) to the states produced by
every subtask. Furthermore it is required to type in
the workload as number of procedures in a time
period. After that the simulation can be started. Ani-
mation is accomplished by dynamically marking
the subtasks which are active. If the simulation
reveals any chances to improve the organization of
the procedure the net can be rearranged interac-
tively. Fig. 8 shows a snapshot of a simulation
where the subtask ’Verification of substantial mat-
ter’ has been expanded since it was found to be a
bottleneck.

Figure 8. Snapshot of an animated simulation

13

VCD

WFD

VCD

OMD

Analysis of competitive position and
design of corporate strategy

WFD OMD

WFD OMD

WFD OMD

Tool Stage

WFD OMD

Figure 9. The usage of MEMO Center during important development stages (this is a simplified
model!) and selected feedbacks between stages.

Identification and modelling of business processes

Identification and modelling of objects used within
the business processes

Design of an object model - including the integration of
existing components

Analysis and re-design of business processes.
Eventually refinement of strategy and object model

Providing prototypes, feedback from experts/users

The WFD also allows for generating a report on
detected media frictions and to graphically visualize
communication relationships. Fig. 9 shows which
tools are primarily used in the various stages of
enterprise modelling.

4 Conclusions

Different from most other methodologies for
object-oriented analysis and design MEMO not
only focuses on the information system in itself but
also on relevant strategic and organizational issues.
Thereby it fosters a smooth integration of an infor-
mation system with business processes and corpo-
rate strategies. Our experience with modelling
office domains within insurance companies indi-
cates that the proposed representations offer illus-
trative abstractions of an enterprise. This is espe-
cially the case for the representation of business
processes. Both system analysts and domain experts
intuitively understood the graphical notation.

Thereby it proved to be a valuable medium for start-
ing knowledge acquisition or object modelling
respectively. We found that asking about strategies
and processes is not only a prerequisite for organi-
zational change. It furthermore helps to identify
objects and specify their semantics. MEMO does -
of course - not guarantee to optimize the organiza-
tion of work. It can help however to reduce com-
plexity by providing an illustrative representation of
important aspects, by detecting certain types of
organizational misconception, and - last but not
least - promoting a sophisticated object-oriented
architecture of a company’s information system.

In the current version MEMO Center is restricted to
one Smalltalk image. Therefore the prototypical
workflow systems only simulate distribution. The
objects used within the prototypes are either imple-
mented directly in Smalltalk or refer to C-functions
which are linked with the virtual machine. Cur-
rently we are working on extensions that will allow

14

for partial generation of distributed workflow man-
agement systems. For this purpose we use HP’s
“Distributed Smalltalk”. It includes a CORBA
implementation according to the OMG guidelines.
MEMO Center will then allow for integrating any
existing component that offers an IDL-interface. In
order to allow for an automatic transformation of an
object model designed according to MEMO into the
OMG object model MEMO Center will be
enhanced with means to distinguish between inher-
itance and subtyping. A text book with a compre-
hensive documentation of the methodology and the
environment will be published by the end of 1994.

References

Booch, G.: Object-oriented design with applica-
tions. Redwood 1990
Coad, P.; Yourdon, E.: Object Oriented Design. En-
glewood Cliffs, NJ 1991
Davenport, T.; Short, J.E.: The New Industrial En-
gineering: Information Technology and Business
Process Redesign. In: Sloan Management Review,
Summer 1990, pp. 11-27
Dennis, A.R.; Hayes, G.S.; Daniels, R.M.: Re-Engi-
neering Business Process Modeling. In: Nunamaker,
J.F.; Sprague, R.H. (Ed.): Proceedings of the 27th
Hawaii International Conference on System Scienc-
es, Vol. IV. Los Alamitos, Ca. 1994, pp. 245-253
ESPRIT Consortium AMICE: CIM-OSA AD 1.0
Architecture Description. Brussels 1991
Frank, U.; Klein, S.: Three integrated tools for de-
signing and prototyping object-oriented enterprise
models. GMD Research Report No. 689, Sankt Au-
gustin 1992
Frank, U.: A Comparison of two Outstanding Meth-
odologies for Object-Oriented Design. GMD Re-
search Report No. 779, Sankt Augustin 1993
Frank, U.: An Object-Oriented Methodology for
Analyzing, Designing and Prototyping Office Pro-
cedures. In: Nunamaker, J.F.; Sprague, R.H. (Ed.):
Proceedings of the 27th Hawaii International Con-
ference on System Sciences, Vol. IV. Los Alamitos,
Ca. 1994, pp. 663-672
Hammer, M.; Champy, J.: Reengineering the Cor-
poration. New York 1993
Hassey, D.E.: Glossary of Management Tech-
niques. In: International Review of Strategic Man-
agement. Vol. 3, 1992, pp. 47-75
Hong, S.; Goor, G.: A Formal Approach to the
Comparison of Object-Oriented Analysis and De-

sign Methodologies. In: Nunamaker, J.F.; Sprague,
R.H. (Ed.): Proceedings of the 26th International
Hawaii International Conferenc on System Scienc-
es, Vol. III., Los Alamitos 1993, pp. 689-698
Jacobson, I.; Christerson, M; Jonsson, P; Overgaard,
G.: Object-Oriented Engineering. A Use Case
Driven Approach. Reading, Mass. 1992
Katz, R.L.: Business/enterprise modelling. In: IBM
Systems Journal, Vol. 29, No. 4, 1990, pp. 509-525
Keen, P.G.W.: Shaping the Future: Business Design
through Information Technology. Cambridge 1991
Meyer, B.: Object-Oriented Software Construction.
Prentice Hall 1988
Monarchi, D.E.; Puhr, G.: A Research Typology for
Object-Oriented Analysis and Design. In: Commu-
nications of the ACM, Vol. 35, No. 9, 1992, pp. 35-
47
Nierstrasz, O.; Dami, L.; De Mey, V.; Stadelmann,
M.; Tsichritzis, D.; Vitek, J.: Visual Scripting: To-
wards Interactive Construction of Object-Oriented.
In: Tsichritzis, D. C. (Hg.): Object Management.
Geneva 1990, pp. 315-331
Peters, L.; Schultz, R.: The Application of Petri-Nets
in Object-Oriented Enterprise Simulations. In: Nu-
namaker, J.F.; Sprague, R.H. (Ed.): Proceedings of
the 26th International Hawaii International Confer-
enc on System Sciences. Vol. III, Los Alamitos
1993, pp. 390-398
Porter, M.E.: Competitive Advantage. New York
1985
Porter, M.E.; Millar, V.E.: How Information Gives
You Competitive Advantage. In: Harvard Business
Review, July/August 1985, pp. 149-160
Rumbaugh et.al.: Object-Oriented Modelling and
Design. Hemel-Hempstead 1990
Scott Morton, M.S.: Strategy formulation methodol-
ogies. Cambridge, Mass. 1986
Sowa, J.F.; Zachman, J.A.: Extending and formaliz-
ing the framework for information systems architec-
ture. In: IBM Systems Journal, Vol. 31, No. 3, 1992,
pp. 590-616
Talwar, R.: Business Re-engineering - a Strategy-
driven approach. In: Long Range Planning, Vol. 26,
No. 6, 1993, pp. 22-40
Wiseman, C.: Strategy and Computers: Information
Systems as Competitive Weapons. Homewood, Ill.
1985
Zachman, J.A.: A framework for information sys-
tems architecture. In: IBM Systems Journal, Vol. 26,
No. 3, 1987, pp. 277-293

1

Abstract

The paper presents a conceptual framework as well
as a design environment to develop object-oriented
enterprise models. It helps to coordinate the design
of a business information system with the modelling
of corporate strategies and organizational (re-) de-
sign. For this purpose the framework introduces
concepts for illustratively modelling and integrating
three main views on the enterprise. The views focus
on corporate strategy, business (process) organizati-
on, and information system design. Thereby the me-
thodology contributes to overcome the communica-
tion barriers that commonly exist between the diffe-
rent views. The integration of the various stages of
system development is promoted by linking con-
cepts of different views. Since business information
systems are usually not built from scratch the metho-
dology provides means for integrating existing soft-
ware or data structures. The development environ-
ment that is based on the framework allows the user
to navigate through the views of an enterprise model
on various levels of detail. It maintains a model’s in-
tegrity and allows for simulation and fast prototy-
ping.

1 The Need for Models of the Enterprise

Designing, implementing and maintaining business
information systems faces a number of challenges.
On the software level it is - among others - desirable
to support integration on a high level of semantics,
to foster integrity and to allow for convenient reuse
of existing artifacts. Penetrating a company with

information technology allows for or may require
new ways to organize the business. During the last
years different aspects of this problem have been
addressed by a variety of approaches. They are
related to notions like “paperless office”, “lean
management” or “business (process) re-engineer-
ing” ([Hammer 93], [Talwar 93]). Reorganizing a
firm or parts of it should be compatible with its long
term goals. On the other hand the range of strategic
options is more or less influenced by the available
information technology - no matter whether you
regard it as a “strategic weapon” ([Porter/Millar
85], [Wiseman 85]) or as a constraint.

The various approaches to deal with those different
challenges usually have one characteristic in com-
mon: they are based on models - either of the whole
enterprise or of parts of it. It has been well accepted
for long that conceptual models are crucial for
designing and implementing integrated information
systems. While those models used to be data-ori-
ented, object-oriented design methodologies are
currently gaining more and more attention. Method-
ologies to support the analyst with business re-engi-
neering are usually based on models as well. They
are mainly focused on business processes ([Daven-
port 90], [Dennis 94]). Furthermore there is a wide
range of models to help with analyzing and shaping
a firm’s strategy. They usually stress a more
abstract view with highly aggregated data (for an
overview see [Hassey 92] and [Scott Morton 86]).
[Keen 91] explicitly promotes the use of informa-
tion technology to develop corporate strategies. All
these models have been introduced to reduce the
complexity of strategic planning in order to help the
analyst to concentrate on the essentials - and to
communicate them to others who should be
involved.

It is no surprise that strategic, organizational and
information system models are usually based on

MEMO: A Tool Supported Methodology for Analyzing and (Re-) Designing
 Business Information Systems

Ulrich Frank
Institut für Wirtschaftsinformatik, Universität Koblenz

Rheinau 1, 56075 Koblenz, Germany
Email: ulrich.frank@informatik.uni-koblenz.de

Published in: Ege, R.; Singh, M.; Meyer, B. (Eds.):
Technology of Object-Oriented Languages ans Sys-
tems. Englewood Cliffs 1994, S. 367-380

2

different concepts. However, treating these differ-
ent aspects independently bares the risk of redun-
dant work and friction - a well known phenomenon
for long. In order to allow for a more synergetic
approach a number of authors ([Zachman 87],
[ESPRIT 91], [Katz 90], [Sowa 92], [Peters 93])
have suggested enriched modelling frameworks -
often named “enterprise modelling” (a term which
is however not used in a unique way). Such method-
ologies differentiate between a number of views on
the enterprise and intend to capture the relationships
between these views. Studying them however
shows that they either remain on a rather abstract
level (for instance: [Sowa 92], [Zachman 87]) or
lack sophisticated concepts - both from a manage-
rial and a software engineering point of view (they
are usually rather data- than object-oriented).

This paper presents a methodology as well as a set
of integrated tools for developing object-oriented
enterprise models that cover the main aspects of
analyzing, designing, implementing and maintain-
ing business information systems. It puts special
emphasis on the following aspects:

• Different ways to conceptualize an enterprise in
an illustrative way, called perspectives or views,
are supported.

• An object-oriented design methodology that is
specially suited for modelling business informa-
tion systems.

• Concepts to support the integration of existing
components, like applications or data structures,
are provided.

• A systematic approach to analyze a firm’s com-
petitive position and to generate strategic
options is included.

• There is support for (re-) designing information
intensive business processes.

• An enterprise model can be very complex. How-
ever, for economic reasons there may be the
need to be less ambitious - both in extent and
detail. Therefore the methodology can be
adapted to the constraints of a specific project.

• The development environment provides various
ways of browsing through an enterprise model
and maintaining its integrity. It also allows for
fast prototyping and simulation.

2 Multi Purpose Enterprise Modelling

Inspired by the vision of highly integrated business
information systems and additionally motivated by

the various problems with existing systems a group
of researchers at GMD started in 1990 to develop
scenarios of how to deal with this complex chal-
lenge. Very soon it became obvious that it was a
key issue to design multi-view models of the enter-
prise - mainly inspired by the framework presented
in [Zachman 87]. We decided on three main views.
The strategic view was to model the enterprise in a
way that fits the perception common to senior exec-
utives. It should allow for illustratively describing a
firm’s competitive position and its strategic options.
The organizational view was to be focussed on a
company’s organizational structure and the way its
tasks/processes are performed. The information sys-
tem view should provide the basic modelling con-
structs (in other words: the meta model for model-
ling) together with a framework to analyze existing
systems and (re-) design and maintain them.

The methodology that has been developed in the
following years - called Multi Purpose Enterprise
Modelling (MEMO) - provides the analyst with var-
ious concepts to describe each view. The concepts
are presented on different levels of detail and preci-
sion: a conceptual framework, guidelines to develop
scenarios (mainly to describe tasks/processes), heu-
ristics that help to identify important aspects, struc-
tured questionnaires to guide interviewing, and tem-
plates to gather formal aspects.

There are three dimensions to structure each of the
three main views. Stage serves to describe a particu-
lar model’s position within the continuum between
analysis, design and maintenance. Each view is
described in terms of the required resources, the
operations or processes, the results which are pro-
duced, and the relevant features of external systems.
This dimension is called focus. Usually it is desir-
able to model a view on a high level of abstraction.
However, for certain types of analysis you may
need to consider the state of instances. Within this
dimension, called aggregation, MEMO allows the
analyst to use concepts (like classes), particular
instances and so called prototypical instances which
represent the average state of a relevant set of
instances (like the salary of the “average clerk”).

2.1 The Strategic View

A methodology to guide analysis and design of cor-
porate strategies should be suited to represent the
required concepts in a way that is familiar to those
who are commonly dealing with strategic planning -
like senior executives. It should be based on gener-
alized assumptions and should also allow to be con-

3

figured/specialized to a particular firm’s needs.
Among the wide range of methodologies (see [Scott
Morton 86]) we found Porter’s value chain
approach to be most appropriate. Due to the com-
plexity and contingency of the domain the method-
ology does not offer a precise guideline for devel-
oping strategies. However, Porter’s approach pro-
vides the analyst with familiar concepts which sup-
port him to develop a solution of his problem in a
systematic way. The value chain concept has gained
a high degree of acceptance with many companies
and consultants.

On the top level Porter models an enterprise as a
system of “activities” which form a “value chain”.
"The value chain disaggregates a firm into its strate-
gically relevant activities in order to understand the
behavior of costs and the existing and potential
sources of differentiation. A firm gains competitive
advantage by performing these strategically impor-
tant activities more cheaply or better than its com-
petitors." ([Porter 85], p. 33) Primary activities are
directly involved in the process to produce the prod-
ucts or services that are offered to a firm’s custom-
ers. They include inbound logistics, operations, out-
bound logistics, marketing and sales and service.
Support activities (firm infrastructure, human
resource management, technology development and
procurement) serve to support primary activities.
An activity is an abstraction of actual business pro-

cesses. Therefore it does not have to directly corre-
spond to a specific process (for a detailed descrip-
tion see [Porter 85]).

In order to adapt Porter’s approach to the MEMO
framework we applied the three dimensions stage,
focus and abstraction to it. There are two outstand-
ing stages - with an arbitrary number of intermedi-
ate stages: the current competitive position and the
position aimed at with the future strategy.
Resources - like various types of capital or human
resource - are used to perform activities. They are
described on a high level of aggregation with
emphasis on cost and quality issues. The outcome
which is produced by an activity is modelled on a
similar level - with aggregated figures for quality
and price. Processes are basically described as a
chain of activities with each activity characterized
by the resources it consumes and its outcome. This
results in a value chain being modelled as a graph of
activities, resources, and outcomes with special
emphasis on the interrelationships.

The relevant external world consists of more or less
detailed value chains of competitors, suppliers and
customers. In order to support the shaping of a
firm’s value chain the analyst is provided with heu-
ristics like “How can the activity be performed dif-
ferently or even eliminated?” or “How can a group
of linked value activities be reordered or
regrouped?” ([Porter 85], p. 110).

accountantsmanagement clerks programmerssales personal

capital technologyhuman resources

social skillstechnical knowl- goal orientation experiencecost awareness

low
average

high

inbound logistics operations outbound logistics

Figure 1. An example for the analysis of resources within the strategic view

4

Additionally Porter offers a top down approach that
suggests to start with one out of a list of “generic
strategies” and stepwise specialize it into a new
value chain.

It is obvious that both analyzing and designing a
value chain require special attention to the interrela-
tionships, which Porter calls “linkages” ([Porter
85], p. 50): "Managing linkages thus is a more com-
plex organizational task than managing value activ-
ities in themselves." While the methodology cer-
tainly does not allow for automatically generating a

firm’s value chain, it can well be mapped to a spe-
cialized browser (see 3). The concepts used to
describe the strategic view are represented in an
object-oriented way according to the meta model
characterized in 2.3.

2.2 The Organizational View

On the organizational level an enterprise model
comprises a model of the organizational structure
and models of business processes - both for analyz-
ing the given state and for designing future states.

Organizational Context

Department, Team, Position

Figure 2. Conceptualization of business processes

Control

Decision rules, Exceptions,
Execution Times

States

of Objects, Forms and Files

Information

Objects, Services, Forms,
Fields, Files

Communication

 Locations, Actors, Channels,
Frequency, Duration

State of the virtual

Activity

procedure document

Process Types

5

The organizational structure is represented by orga-
nizational units (such as divisions, departments,
groups, positions etc.) and their relationships
(“reports to”, “is part of” etc.). In addition to model-
ling a particular structure MEMO encourages the
analyst to identify general rules for the division of
labor and its coordination. Organizational resources
are usually modelled as prototypical instances.
Examples for resources on this level are people,
buildings, furniture, machinery etc. Computer hard-
ware may also be considered as resource within the
organizational view. It is described by referring to
the information system view (see below). Features
which may be described within prototypical
instances include various types of cost, availability,
capacity etc. The number of resources and the detail
of their description is subject to individual configu-
ration. The external world is represented by relevant
roles (like lawyer, consultant, customer, etc.) and
services.

A business process is modelled as an ordered graph
of subprocesses, where a subprocess in itself can be
decomposed into other subprocesses. MEMO’s
emphasis is on office procedures. Therefore the
“material” that is operated on is information. Infor-
mation is grouped into three categories: objects
which reside on the computer based information
system, forms, and files. Information that is located
in the information system is described by referring
to the object model that is part of the information
system view (see below). Forms have a formal
structure, that is they contain fields, have well
defined states (like ’complete’, ’incomplete’, ’con-
sistent’), and a set of constraints defines the permis-
sible operations. Their content may be changed
within a subprocess. The term file is used to sum-
marize documented information that is read-only -
like office files, letters or journals. The information
a business process operates on is gathered in a “vir-
tual procedure document” that extends the tradi-
tional notion of a document in two respects: It may
contain references to information that is located
somewhere else. Furthermore it can be duplicated
and thereby processed in parallel. Each subprocess
is triggered by a certain state of the virtual proce-
dure document and produces one or more new
states.

Each process is assigned an organizational context
by referring to the organizational units which are
responsible for its execution. By default the organi-
zational context is propagated to the subprocesses
where it may be overwritten. Furthermore each pro-

cess can be characterized by business rules like:
“All subprocesses should be managed by the same
person.” The subprocesses can be described in a
very detailed way - depending on the effort that is to
be spent for analysis. Among the more important
features are: minimum and maximum execution
time, decision rules, required resources (for
instance: copy machine, printer), exceptions, people
(roles) needed to communicate with, communica-
tion media etc. In order to support the re-design of
business processes MEMO provides the analyst
with means to analyze existing processes and
design heuristics. The model of a business process
allows the analyst to detect media frictions (for
instance: information that originally resides in the
information system and is then being transferred to
a form), to identify bottlenecks, or to draw commu-
nication nets. By adding statistical data on work-
load, capacity and probabilities of the subprocesses’
possible outcome the model can be utilized to per-
form simulations (see fig. 8).

By focussing on processes the organizational model
serves different purposes: It helps to redesign the
business (if necessary), it helps to define the com-
munication technology required to improve effi-
ciency, and - last but not least - it supports to iden-
tify the objects/classes required to perform the rele-
vant tasks. As with the strategic view the concepts
of the organizational view are described with the
object-oriented meta model (see below) in mind.
Therefore they can be represented as an object
model which fosters their mapping on a tool.

2.3 The Information System View

The information system view includes both a model
of the existing system and the system that is to be
designed. They are separated into an object-oriented
conceptual model and a model of information sys-
tem resources (like hardware, networks, operating
systems). An object-oriented conceptual model
includes an object model and other models to
express dynamic aspects. Among the still increasing
number of object-oriented design methodologies (in
a survey we did last year we found more than forty
approaches) we felt most inspired by the ones pro-
posed by [Booch 90], [Rumbaugh et al. 90], and
[Jacobson et al. 92]. However, none of them was
satisfactory for our purpose. While Rumbaugh et
al.’ methodology suffers from being somewhat
superficial and not consequently object-oriented,
Booch’s approach seems to be overloaded by
details of various programming languages - which,

6

in our opinion, should not be part of a general meth-
odology for the design of conceptual models.
Jacobson et al. are primarily focussing on analysis
and put less emphasis on software engineering
issues occurring during design. (for a comparison of
important methodologies see [Frank 93], [Hong
93], [Monarchi 92]). Furthermore we were not sat-
isfied with the way dynamic aspects are modelled
within these approaches. State transition diagrams
are often suggested to capture dynamic aspects. At
first sight such diagrams seem to be appropriate for
modelling automated business processes, since they
allow the analyst to describe events and correspond-
ing state changes. They are however restricted to
events and state transitions which may occur during
the lifetime of objects of one class. Within an office
procedure however one usually needs objects of
more than one class.

2.3.1 Conceptualizing Object Models

While from a (re-)using programmer´s point of
view it is sufficient to describe an object solely by
the services it provides analysis and design require
a more detailed view. Within an object model one
defines classes and associations between classes or
between objects respectively. Like in most other
methodologies the outstanding features of a class
are attributes and services. An attribute is regarded
as an object that is encapsulated within an object.
We do not allow attributes - like [Coad 91] - to only
hold references to external objects that have an
existence of there own in the object space. An
attributes semantics is primarily defined by its class.
Furthermore a cardinality (using min-max notation)
may be assigned. Assigning a default value allows
for generating appropriate initialization operations.

Class

Name

Superclass

Comment

Value Set

Attribute

Service

Association

Trigger

Guard

State

Name

Comment

Parameter

Output

Precondition

Postcondition

Exception

Access-Priv.

Label

Name

InverseName

Type

Inverse-Type

Class

Cardinality

Name

Comment

Class

Cardinality

Default-Value

Access-Priv.

History

Label

Name

Invariant

Name

Event-Action

0,1

0,1

0,1

0,*

0,*

0,*

0,*

0,*

1,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

0,1

0,*

0,1

0,1

0,1

0,*

1,1

0,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

Figure 3. Part of the meta model for conceptualizing object models

Default View
0,*

7

Each attribute is also characterized by a history-
flag. Setting it to true means that every update
should be recorded somehow.

In order to allow for generating prototypical user-
interfaces it is possible to assign a default-view to
each class. A default view is either a widget or a
collection of widgets. One can also define a label
that is to be presented with the default view. Addi-
tionally features like size and font may be specified.
This approach is a first attempt to deal with the
complexity of user interaction. It cannot be com-
pletely satisfactory: the way a value of a certain
class is presented to the user often is not unique but
varies with the context of interaction.

In order to specify a service the designer may
describe a list of input-parameters (which can be
empty) where each parameter is characterized by its
class and its name. If a service returns a result it has

to be exactly one object. So it is sufficient to define
the class of this object. It is important to note that
such an object may be a composed object (like an
array, a container etc.) that contains many other
objects. A precondition in general specifies condi-
tions "under which a routine will function properly"
([Meyer 88], p. 114). In our model it can be defined
by referring to object or parameter states. For
instance: For a service that requires an object of
class ’Person’ as a parameter it may be necessary
that the service ’sex’ delivers the state ’male’.

A postcondition has to be fulfilled after the service
has terminated. Similar to a precondition it can be
defined by referring to an object state or to a state of
the object that is returned by the service. Each ser-
vice can be assigned a set of exceptions (like media
errors) which should be named in a unified way for
a whole object model. Thereby exception handling
can be defined for all involved objects in the same
way.

During the life time of an object there may be cer-
tain events and rules which go beyond the scope of
a single service. For this purpose we introduce trig-
gers and guards. A trigger can be generally defined
as a tupel consisting of an event and an action. The
event is specified by a condition that in turn is
defined by referring to attribute states or states of
objects which are returned by a service. The action
is defined by the service that has to be executed
when the event occurs.

ProcedureSupervisor

RiskEvalua-

InsuranceSupervisor

Manager

Employee

Clerk

Object Model
Repository

uses

controls

Figure 4. Integration of object model and office procedure models within an enterprise-wide repository

ProcedureManager

ProcessModels

ClaimsProcessing-

To give an example for a trigger: Whenever an
object of class ’customerAccount’ has a balance
less than x, the object should execute a service that
is suited to notify somebody who is managing the
account. A guard is a condition that has to be ful-
filled during the lifetime of any object of a particu-
lar class (similar to what [Meyer 88], p. 124) calls
"class invariant"). For instance: The value of
attribute ’retailPrice’ within objects of class ’Prod-
uct’ should never be lower than the value of
attribute ’wholesalePrice’.

8

Every class may have exactly one superclass.
Although there are a number of arguments in favor
of multiple inheritance we restricted our model to
single inheritance. We found that in most cases sin-
gle inheritance is satisfactory while multiple inher-
itance increases the complexity of an object model
and thereby makes it more difficult to maintain it in
a consistent way. On the instance level MEMO dis-
tinguishes between two types of associations: inter-
action and aggregation. However, for a conceptual
object model to be illustrative it is desirable to
allow for a more detailed differentiation. For this
reason each association has to be assigned a domain
level identifier. Such identifiers do not include any
semantics, they only improve readability of the
model and allow for enhanced retrieval capabilities.

In order to allow for smoothly integrating existing
elements - like applications or data structures -
MEMO suggests that the modeller regards them as
objects. Application classes are subclasses of the
class “Application” that provides attributes and ser-
vices to manage information like installation date,
version, cost etc. An application class is usually
modelled by the set of services it offers to the out-
side (which is rather poor for the average legacy
application) and details about the communication
protocol (for instance: OS-call, RPC, UDP or
CORBA). Existing data structures, such as relation
types of an RDBMS or a document file of a word
processor, are represented as dummy classes: They
do not encapsulate any attributes, instead they offer
services that allow to access an existing element.
For instance: class ‘WordDocument’ represents
documents produced by a certain word processor. In
order to integrate them with a more sophisticated
model one can use an association with the reserved
name “corresponds to”. For instance: “RelTypeCus-
tomer corresponds to Customer” or “WordDocu-
ment corresponds to CompoundDocument”. Some
existing applications use data that might be shared
with other objects. Whenever such a potential
source of redundancy is discovered it can be
expressed in the model using an association with
the reserved name: “should use”. For instance:
“AccountingSystem should use Customer”. To
avoid confusion about the implementation state of a
model it is important to assign one of four pre-
defined states to each class: “not implemented”,
“implemented”, “dummy”, “encapsulated”. Fig. 3
gives an overview of the concepts proposed for
designing object models. For a more comprehensive
documentation see [Frank 92], [Frank 94].

2.3.2 Modelling dynamic aspects

A methodology for modelling dynamic behavior
should allow for conveniently expressing temporal
and control (in other words: dynamic) aspects. It
should also help to avoid inconsistencies, like non
terminating cycles, tasks which cannot be reached
by any chance, deadlocks, etc. Unlike the object-
oriented methodologies mentioned above Peters
and Schultz [Peters 93] propose a modelling tech-
nique that allows for including objects of more than
one class. They use Petri nets where each transition
represents a state transition of an object of a particu-
lar class. Different transitions within a net may rep-
resent objects of different classes. Furthermore they
allow - different from traditional concepts - transi-
tions to have an execution time larger than zero.
Mapping transitions to operations of an object of a
certain class is attractive from a software-engineer-
ing point of view since it supports the idea of build-
ing procedures by ’glueing’ objects together (as it is
proposed in [Nierstrasz 90]). Nevertheless such an
approach has its deficiencies, too. It is important for
a model to allow for direct correspondence to famil-
iar conceptualizations of the relevant domain. Busi-
ness processes are not necessarily structured in a
way that there is always only one object operated on
within a subtask.

The approach we have chosen is similar to the one
suggested by Peters and Schultz in that we also use
semantically enriched Petri nets and allow transi-
tions to have an execution time larger than zero.
Our methodology however allows to explicitly
assign objects of many different classes to one tran-
sition. The information system model of a process is
very similar to the model of a business process
within the organizational level - and in fact may be
deducted from it. The main difference: On the infor-
mation system level a process is described only by
its automated parts. That implies tighter constraints
on the specification of the information being pro-
cessed: only information that is represented in the
object model can be regarded.

In order to provide the model with prototyping
capabilities it is necessary to enhance it with infor-
mation about a suitable user-interface. This infor-
mation can be deducted from those services
assigned to a subtask. The widgets needed to inter-
act with the services can be looked up in the object
model (see above). Since every suitable class in the
object model should have a default view assigned to
it, a prototypical user-interface for an activity can
be generated.

9

level of aggregation level of formalization

Resources Operations Results/ External System

Strategy

Organization

Information System

longterm

competitive

competitors

customers

suppliers

primary/support
human
capital

technology
edge

profits/losses

people
machinery

tasks
business

customers
suppliers
partners

productivity
motivation

qualitycostprocesses

services

processes
hardware
networks

OS
Objects

standards

customers
suppliers

productivity
reliability

maintainability
integrity

Figure 5. Selected concepts of different views and foci

Success Factors

activities

Procedure models are integrated with an object
model in two ways. First they refer to the objects
they use, second the management of an office pro-
cedure is done by objects that are specified within
the object model themselves. Fig. 4 shows how an
object model and office procedure models could be
represented within an enterprise-wide repository.

2.4 Integrating the Views

While it might be an intriguing vision to deduct the
model of the information system from the organiza-
tional model and the organizational model from the
strategic model, we did not even try to accomplish
such a level of integration. This is mainly for two
reasons. First: there is hardly general knowledge of
how to deduct the organizational concept best
suited to accomplish a strategic goal (which is also
the case for the relationship between organizational
model and information system model). Second:
usually a strategy cannot be developed indepen-
dently from organizational options which in turn are
influenced by information technology as well. For
those reasons MEMO allows one to explicitly link
concepts on different levels. Direct tight coupling is
the case, if a concept of a certain view directly cor-

responds to a concept of another view. For instance:
The concept “Customer” within the organizational
view corresponds to the class “Customer” within
the information system view - although the repre-
sentations may vary in detail.

The other extreme would be indirect weak coupling.
For instance: The goal “customer satisfaction” on
the strategic level could be first linked to a model of
the firm’s order processing on the organizational
level. From there one could establish a link to
objects within the information system view that
provide services compatible with certain EDI-stan-
dards.

3 MEMO-Center: The Design Environment

Designing enterprise models according to the pro-
posed methodology can hardly be accomplished
without appropriate tools: A complex model
requires support for browsing and searching.
Because of multiple integrity constraints mainte-
nance that is solely done manually jeopardizes a
model’s consistency to an unacceptable extent.
Finally it is impossible to do without tools when
prototyping is to be accomplished. For these rea-
sons we developed an environment based on the

10

MEMO framework. It was implemented using
Smalltalk-80 within the Objectworks® 4.0 environ-
ment on Sun4-workstations. High productivity
could be achieved by using additional class libraries
(see [Frank 92] for more details). The current ver-
sion runs under Objectworks® 4.1 and Visual-
Works® - on all platforms the appropriate Parc
Place Smalltalk machine is available for.

The environment consists of three main tools: The
Value Chain Designer (VCD) serves to design and
analyze models of a firm’s value chain. The Object
Model Designer (OMD) supports the specification
of object models. It provides various features to
search for certain elements of an object model and
to browse through the model. The Workflow
Designer (WFD) allows for conveniently modelling
business processes. It provides functions for simula-
tion, fast prototyping and organizational analysis.
The three tools are tightly integrated. The integra-
tion on the conceptual level has already been char-
acterized above. System integration is accom-

plished by locating the tools within one Smalltalk
image. The concepts managed by the tools can be
annotated by using an integrated hypertext system.

The VCD provides a browser through the different
elements of a value chain. The description of proto-
typical instances (like “human resource”) is sup-
ported by predefined value sets (like “high”, “aver-
age”, “low”) which can be modified interactively.
This is the case, too, for relationships between
activities. They can be characterized using an exten-
sible list of identifiers (like “supports”, “supported
by”, “contains”, etc.). In addition to a textual repre-
sentation relationships can be visualized in a graph-
ical way. Items managed within the VCD can be
associated to related items within the other tools.
For instance: ”activity uses business process”. The
VCD controls referential integrity of a value chain.
Furthermore it provides dialogs to guide with ana-
lyzing and re-designing a value chain.

Figure 6. User-interface of the Object Model Designer

11

According to the meta model described above the
OMD offers a number of different levels of abstrac-
tion. On the highest level class names are grouped
into categories. On the next level a class can be
assigned a list of attribute names, service names,
guard names, and trigger names. Selecting an
attribute, service, etc. causes the corresponding
window to pop to the front. It allows for a more
detailed description. Fig. 6 shows the window that
contains the template for specifying an attribute -
’dateOfBirth’ in the given example. Its class is
’Date’. The services which are provided by this
class are shown in a listbox. If one of these services
is needed for the class that is currently selected
(which is ’InsuredPerson’ in our example) it can be
pasted to the services-listbox of this class - a conve-
nient way to accomplish reusability. The OMD will
then establish a reference to this service.

In order to foster system integrity it is not possible
to type in a class name directly to characterize an
attribute, a superclass, or a parameter. Instead it is
required that the dictionary that contains all class
names is updated first. Then the name can be pasted
to the corresponding field. The OMD controls a
number of integrity constraints. It prevents the user

from deleting elements which are referenced by
other elements, from assigning superclasses or
classes of attributes in an inconsistent way, etc. The
graphical representation of the class hierarchy can
be used as an additional browser. The icons are
mouse sensitive and cause the focus to shift to the
selected class.

The main focus of the WFD is on business pro-
cesses - both for analysis (that is mainly the organi-
zational view) and design (organizational and infor-
mation system view). On the highest level of
abstraction the user can draw a business process
picking from predefined icons within a specialized
editor. When the procedure is described on this
level (see fig. 7), the user can ’zoom’ into it by
selecting an icon - either a subtask or a document
state. Within the example shown in fig. 7 the sub-
task ’Verification of substantial matter’ is selected.
Within the window titled ’Activity’ it can be char-
acterized by assigning execution times, an organiza-
tional unit, an organizational position, and possible
exceptions. Furthermore the classes (like ’Insured-
Person’, ’Policy’, etc.), forms, and files which are
needed as well as the involved roles can be listed in
this window.

Figure 7. User-interface of the Workflow Designer

12

Selecting an item causes a window with an appro-
priate template to pop to the front. Within the exam-
ple shown in fig. 7 this is the window in top right
position. It allows to pick the required services from
the selected class. For each service - or the object it
delivers respectively - it can be specified what it is
needed for: either for a form or for communicating
with an involved person. The example shows that
the service ’profession’ is needed for the ’Applica-
tionForm’ as well as for communicating with the
’InsuredPerson’ and the ’Expert’.

Other templates exist to specify the relevant infor-
mation within forms (fields together with an infor-
mal description of their purpose) or files (physical
location, subject of interest within the file) and as
well as the communication with involved persons
(channel, subject). These specifications are used to
generate a protocol which is shown in the right bot-
tom corner of the ’Activity’ window in fig. 7.
Another text-widget within this window presents a
template that can be filled to describe decision rules
relevant for the focussed activity. A selected docu-
ment state is specified in a similar way. First the
classes, forms, and files which are involved in this
state are assigned to it. Then these items have to be
characterized in a more detailed way. The state of
an object (which is represented by the name of its
class) has to be defined by naming a boolean ser-
vice that checks this state. That requires one to

enhance the class with this service by switching to
the OMD. For instance: An object of class ’Policy’
is required to be in state ’valid’. That requires a ser-
vice like ’isValid’ to be specified for this class. For
every form it has to be defined which fields have to
be filled in. A file is characterized by its physical
location and optionally the means of transportation
to get it to the clerk. In order to support the user and
to avoid inconsistencies the classes, forms and files
assigned to a document state are pasted to the sub-
task that is triggered by this state. The WFD can
generate a prototypical user-interface for every
activity - provided the default views have been
assigned to the corresponding classes in the object
model (see above). The widgets placed within such
an interface may be rearranged interactively. In
order to use the simulation features built into the
WFD it is necessary to first assign probabilities
(using percentage values) to the states produced by
every subtask. Furthermore it is required to type in
the workload as number of procedures in a time
period. After that the simulation can be started. Ani-
mation is accomplished by dynamically marking
the subtasks which are active. If the simulation
reveals any chances to improve the organization of
the procedure the net can be rearranged interac-
tively. Fig. 8 shows a snapshot of a simulation
where the subtask ’Verification of substantial mat-
ter’ has been expanded since it was found to be a
bottleneck.

Figure 8. Snapshot of an animated simulation

13

VCD

WFD

VCD

OMD

Analysis of competitive position and
design of corporate strategy

WFD OMD

WFD OMD

WFD OMD

Tool Stage

WFD OMD

Figure 9. The usage of MEMO Center during important development stages (this is a simplified
model!) and selected feedbacks between stages.

Identification and modelling of business processes

Identification and modelling of objects used within
the business processes

Design of an object model - including the integration of
existing components

Analysis and re-design of business processes.
Eventually refinement of strategy and object model

Providing prototypes, feedback from experts/users

The WFD also allows for generating a report on
detected media frictions and to graphically visualize
communication relationships. Fig. 9 shows which
tools are primarily used in the various stages of
enterprise modelling.

4 Conclusions

Different from most other methodologies for
object-oriented analysis and design MEMO not
only focuses on the information system in itself but
also on relevant strategic and organizational issues.
Thereby it fosters a smooth integration of an infor-
mation system with business processes and corpo-
rate strategies. Our experience with modelling
office domains within insurance companies indi-
cates that the proposed representations offer illus-
trative abstractions of an enterprise. This is espe-
cially the case for the representation of business
processes. Both system analysts and domain experts
intuitively understood the graphical notation.

Thereby it proved to be a valuable medium for start-
ing knowledge acquisition or object modelling
respectively. We found that asking about strategies
and processes is not only a prerequisite for organi-
zational change. It furthermore helps to identify
objects and specify their semantics. MEMO does -
of course - not guarantee to optimize the organiza-
tion of work. It can help however to reduce com-
plexity by providing an illustrative representation of
important aspects, by detecting certain types of
organizational misconception, and - last but not
least - promoting a sophisticated object-oriented
architecture of a company’s information system.

In the current version MEMO Center is restricted to
one Smalltalk image. Therefore the prototypical
workflow systems only simulate distribution. The
objects used within the prototypes are either imple-
mented directly in Smalltalk or refer to C-functions
which are linked with the virtual machine. Cur-
rently we are working on extensions that will allow

14

for partial generation of distributed workflow man-
agement systems. For this purpose we use HP’s
“Distributed Smalltalk”. It includes a CORBA
implementation according to the OMG guidelines.
MEMO Center will then allow for integrating any
existing component that offers an IDL-interface. In
order to allow for an automatic transformation of an
object model designed according to MEMO into the
OMG object model MEMO Center will be
enhanced with means to distinguish between inher-
itance and subtyping. A text book with a compre-
hensive documentation of the methodology and the
environment will be published by the end of 1994.

References

Booch, G.: Object-oriented design with applica-
tions. Redwood 1990
Coad, P.; Yourdon, E.: Object Oriented Design. En-
glewood Cliffs, NJ 1991
Davenport, T.; Short, J.E.: The New Industrial En-
gineering: Information Technology and Business
Process Redesign. In: Sloan Management Review,
Summer 1990, pp. 11-27
Dennis, A.R.; Hayes, G.S.; Daniels, R.M.: Re-Engi-
neering Business Process Modeling. In: Nunamaker,
J.F.; Sprague, R.H. (Ed.): Proceedings of the 27th
Hawaii International Conference on System Scienc-
es, Vol. IV. Los Alamitos, Ca. 1994, pp. 245-253
ESPRIT Consortium AMICE: CIM-OSA AD 1.0
Architecture Description. Brussels 1991
Frank, U.; Klein, S.: Three integrated tools for de-
signing and prototyping object-oriented enterprise
models. GMD Research Report No. 689, Sankt Au-
gustin 1992
Frank, U.: A Comparison of two Outstanding Meth-
odologies for Object-Oriented Design. GMD Re-
search Report No. 779, Sankt Augustin 1993
Frank, U.: An Object-Oriented Methodology for
Analyzing, Designing and Prototyping Office Pro-
cedures. In: Nunamaker, J.F.; Sprague, R.H. (Ed.):
Proceedings of the 27th Hawaii International Con-
ference on System Sciences, Vol. IV. Los Alamitos,
Ca. 1994, pp. 663-672
Hammer, M.; Champy, J.: Reengineering the Cor-
poration. New York 1993
Hassey, D.E.: Glossary of Management Tech-
niques. In: International Review of Strategic Man-
agement. Vol. 3, 1992, pp. 47-75
Hong, S.; Goor, G.: A Formal Approach to the
Comparison of Object-Oriented Analysis and De-

sign Methodologies. In: Nunamaker, J.F.; Sprague,
R.H. (Ed.): Proceedings of the 26th International
Hawaii International Conferenc on System Scienc-
es, Vol. III., Los Alamitos 1993, pp. 689-698
Jacobson, I.; Christerson, M; Jonsson, P; Overgaard,
G.: Object-Oriented Engineering. A Use Case
Driven Approach. Reading, Mass. 1992
Katz, R.L.: Business/enterprise modelling. In: IBM
Systems Journal, Vol. 29, No. 4, 1990, pp. 509-525
Keen, P.G.W.: Shaping the Future: Business Design
through Information Technology. Cambridge 1991
Meyer, B.: Object-Oriented Software Construction.
Prentice Hall 1988
Monarchi, D.E.; Puhr, G.: A Research Typology for
Object-Oriented Analysis and Design. In: Commu-
nications of the ACM, Vol. 35, No. 9, 1992, pp. 35-
47
Nierstrasz, O.; Dami, L.; De Mey, V.; Stadelmann,
M.; Tsichritzis, D.; Vitek, J.: Visual Scripting: To-
wards Interactive Construction of Object-Oriented.
In: Tsichritzis, D. C. (Hg.): Object Management.
Geneva 1990, pp. 315-331
Peters, L.; Schultz, R.: The Application of Petri-Nets
in Object-Oriented Enterprise Simulations. In: Nu-
namaker, J.F.; Sprague, R.H. (Ed.): Proceedings of
the 26th International Hawaii International Confer-
enc on System Sciences. Vol. III, Los Alamitos
1993, pp. 390-398
Porter, M.E.: Competitive Advantage. New York
1985
Porter, M.E.; Millar, V.E.: How Information Gives
You Competitive Advantage. In: Harvard Business
Review, July/August 1985, pp. 149-160
Rumbaugh et.al.: Object-Oriented Modelling and
Design. Hemel-Hempstead 1990
Scott Morton, M.S.: Strategy formulation methodol-
ogies. Cambridge, Mass. 1986
Sowa, J.F.; Zachman, J.A.: Extending and formaliz-
ing the framework for information systems architec-
ture. In: IBM Systems Journal, Vol. 31, No. 3, 1992,
pp. 590-616
Talwar, R.: Business Re-engineering - a Strategy-
driven approach. In: Long Range Planning, Vol. 26,
No. 6, 1993, pp. 22-40
Wiseman, C.: Strategy and Computers: Information
Systems as Competitive Weapons. Homewood, Ill.
1985
Zachman, J.A.: A framework for information sys-
tems architecture. In: IBM Systems Journal, Vol. 26,
No. 3, 1987, pp. 277-293

1

Abstract

The paper presents a conceptual framework as well
as a design environment to develop object-oriented
enterprise models. It helps to coordinate the design
of a business information system with the modelling
of corporate strategies and organizational (re-) de-
sign. For this purpose the framework introduces
concepts for illustratively modelling and integrating
three main views on the enterprise. The views focus
on corporate strategy, business (process) organizati-
on, and information system design. Thereby the me-
thodology contributes to overcome the communica-
tion barriers that commonly exist between the diffe-
rent views. The integration of the various stages of
system development is promoted by linking con-
cepts of different views. Since business information
systems are usually not built from scratch the metho-
dology provides means for integrating existing soft-
ware or data structures. The development environ-
ment that is based on the framework allows the user
to navigate through the views of an enterprise model
on various levels of detail. It maintains a model’s in-
tegrity and allows for simulation and fast prototy-
ping.

1 The Need for Models of the Enterprise

Designing, implementing and maintaining business
information systems faces a number of challenges.
On the software level it is - among others - desirable
to support integration on a high level of semantics,
to foster integrity and to allow for convenient reuse
of existing artifacts. Penetrating a company with

information technology allows for or may require
new ways to organize the business. During the last
years different aspects of this problem have been
addressed by a variety of approaches. They are
related to notions like “paperless office”, “lean
management” or “business (process) re-engineer-
ing” ([Hammer 93], [Talwar 93]). Reorganizing a
firm or parts of it should be compatible with its long
term goals. On the other hand the range of strategic
options is more or less influenced by the available
information technology - no matter whether you
regard it as a “strategic weapon” ([Porter/Millar
85], [Wiseman 85]) or as a constraint.

The various approaches to deal with those different
challenges usually have one characteristic in com-
mon: they are based on models - either of the whole
enterprise or of parts of it. It has been well accepted
for long that conceptual models are crucial for
designing and implementing integrated information
systems. While those models used to be data-ori-
ented, object-oriented design methodologies are
currently gaining more and more attention. Method-
ologies to support the analyst with business re-engi-
neering are usually based on models as well. They
are mainly focused on business processes ([Daven-
port 90], [Dennis 94]). Furthermore there is a wide
range of models to help with analyzing and shaping
a firm’s strategy. They usually stress a more
abstract view with highly aggregated data (for an
overview see [Hassey 92] and [Scott Morton 86]).
[Keen 91] explicitly promotes the use of informa-
tion technology to develop corporate strategies. All
these models have been introduced to reduce the
complexity of strategic planning in order to help the
analyst to concentrate on the essentials - and to
communicate them to others who should be
involved.

It is no surprise that strategic, organizational and
information system models are usually based on

MEMO: A Tool Supported Methodology for Analyzing and (Re-) Designing
 Business Information Systems

Ulrich Frank
Institut für Wirtschaftsinformatik, Universität Koblenz

Rheinau 1, 56075 Koblenz, Germany
Email: ulrich.frank@informatik.uni-koblenz.de

Published in: Ege, R.; Singh, M.; Meyer, B. (Eds.):
Technology of Object-Oriented Languages ans Sys-
tems. Englewood Cliffs 1994, S. 367-380

2

different concepts. However, treating these differ-
ent aspects independently bares the risk of redun-
dant work and friction - a well known phenomenon
for long. In order to allow for a more synergetic
approach a number of authors ([Zachman 87],
[ESPRIT 91], [Katz 90], [Sowa 92], [Peters 93])
have suggested enriched modelling frameworks -
often named “enterprise modelling” (a term which
is however not used in a unique way). Such method-
ologies differentiate between a number of views on
the enterprise and intend to capture the relationships
between these views. Studying them however
shows that they either remain on a rather abstract
level (for instance: [Sowa 92], [Zachman 87]) or
lack sophisticated concepts - both from a manage-
rial and a software engineering point of view (they
are usually rather data- than object-oriented).

This paper presents a methodology as well as a set
of integrated tools for developing object-oriented
enterprise models that cover the main aspects of
analyzing, designing, implementing and maintain-
ing business information systems. It puts special
emphasis on the following aspects:

• Different ways to conceptualize an enterprise in
an illustrative way, called perspectives or views,
are supported.

• An object-oriented design methodology that is
specially suited for modelling business informa-
tion systems.

• Concepts to support the integration of existing
components, like applications or data structures,
are provided.

• A systematic approach to analyze a firm’s com-
petitive position and to generate strategic
options is included.

• There is support for (re-) designing information
intensive business processes.

• An enterprise model can be very complex. How-
ever, for economic reasons there may be the
need to be less ambitious - both in extent and
detail. Therefore the methodology can be
adapted to the constraints of a specific project.

• The development environment provides various
ways of browsing through an enterprise model
and maintaining its integrity. It also allows for
fast prototyping and simulation.

2 Multi Purpose Enterprise Modelling

Inspired by the vision of highly integrated business
information systems and additionally motivated by

the various problems with existing systems a group
of researchers at GMD started in 1990 to develop
scenarios of how to deal with this complex chal-
lenge. Very soon it became obvious that it was a
key issue to design multi-view models of the enter-
prise - mainly inspired by the framework presented
in [Zachman 87]. We decided on three main views.
The strategic view was to model the enterprise in a
way that fits the perception common to senior exec-
utives. It should allow for illustratively describing a
firm’s competitive position and its strategic options.
The organizational view was to be focussed on a
company’s organizational structure and the way its
tasks/processes are performed. The information sys-
tem view should provide the basic modelling con-
structs (in other words: the meta model for model-
ling) together with a framework to analyze existing
systems and (re-) design and maintain them.

The methodology that has been developed in the
following years - called Multi Purpose Enterprise
Modelling (MEMO) - provides the analyst with var-
ious concepts to describe each view. The concepts
are presented on different levels of detail and preci-
sion: a conceptual framework, guidelines to develop
scenarios (mainly to describe tasks/processes), heu-
ristics that help to identify important aspects, struc-
tured questionnaires to guide interviewing, and tem-
plates to gather formal aspects.

There are three dimensions to structure each of the
three main views. Stage serves to describe a particu-
lar model’s position within the continuum between
analysis, design and maintenance. Each view is
described in terms of the required resources, the
operations or processes, the results which are pro-
duced, and the relevant features of external systems.
This dimension is called focus. Usually it is desir-
able to model a view on a high level of abstraction.
However, for certain types of analysis you may
need to consider the state of instances. Within this
dimension, called aggregation, MEMO allows the
analyst to use concepts (like classes), particular
instances and so called prototypical instances which
represent the average state of a relevant set of
instances (like the salary of the “average clerk”).

2.1 The Strategic View

A methodology to guide analysis and design of cor-
porate strategies should be suited to represent the
required concepts in a way that is familiar to those
who are commonly dealing with strategic planning -
like senior executives. It should be based on gener-
alized assumptions and should also allow to be con-

3

figured/specialized to a particular firm’s needs.
Among the wide range of methodologies (see [Scott
Morton 86]) we found Porter’s value chain
approach to be most appropriate. Due to the com-
plexity and contingency of the domain the method-
ology does not offer a precise guideline for devel-
oping strategies. However, Porter’s approach pro-
vides the analyst with familiar concepts which sup-
port him to develop a solution of his problem in a
systematic way. The value chain concept has gained
a high degree of acceptance with many companies
and consultants.

On the top level Porter models an enterprise as a
system of “activities” which form a “value chain”.
"The value chain disaggregates a firm into its strate-
gically relevant activities in order to understand the
behavior of costs and the existing and potential
sources of differentiation. A firm gains competitive
advantage by performing these strategically impor-
tant activities more cheaply or better than its com-
petitors." ([Porter 85], p. 33) Primary activities are
directly involved in the process to produce the prod-
ucts or services that are offered to a firm’s custom-
ers. They include inbound logistics, operations, out-
bound logistics, marketing and sales and service.
Support activities (firm infrastructure, human
resource management, technology development and
procurement) serve to support primary activities.
An activity is an abstraction of actual business pro-

cesses. Therefore it does not have to directly corre-
spond to a specific process (for a detailed descrip-
tion see [Porter 85]).

In order to adapt Porter’s approach to the MEMO
framework we applied the three dimensions stage,
focus and abstraction to it. There are two outstand-
ing stages - with an arbitrary number of intermedi-
ate stages: the current competitive position and the
position aimed at with the future strategy.
Resources - like various types of capital or human
resource - are used to perform activities. They are
described on a high level of aggregation with
emphasis on cost and quality issues. The outcome
which is produced by an activity is modelled on a
similar level - with aggregated figures for quality
and price. Processes are basically described as a
chain of activities with each activity characterized
by the resources it consumes and its outcome. This
results in a value chain being modelled as a graph of
activities, resources, and outcomes with special
emphasis on the interrelationships.

The relevant external world consists of more or less
detailed value chains of competitors, suppliers and
customers. In order to support the shaping of a
firm’s value chain the analyst is provided with heu-
ristics like “How can the activity be performed dif-
ferently or even eliminated?” or “How can a group
of linked value activities be reordered or
regrouped?” ([Porter 85], p. 110).

accountantsmanagement clerks programmerssales personal

capital technologyhuman resources

social skillstechnical knowl- goal orientation experiencecost awareness

low
average

high

inbound logistics operations outbound logistics

Figure 1. An example for the analysis of resources within the strategic view

4

Additionally Porter offers a top down approach that
suggests to start with one out of a list of “generic
strategies” and stepwise specialize it into a new
value chain.

It is obvious that both analyzing and designing a
value chain require special attention to the interrela-
tionships, which Porter calls “linkages” ([Porter
85], p. 50): "Managing linkages thus is a more com-
plex organizational task than managing value activ-
ities in themselves." While the methodology cer-
tainly does not allow for automatically generating a

firm’s value chain, it can well be mapped to a spe-
cialized browser (see 3). The concepts used to
describe the strategic view are represented in an
object-oriented way according to the meta model
characterized in 2.3.

2.2 The Organizational View

On the organizational level an enterprise model
comprises a model of the organizational structure
and models of business processes - both for analyz-
ing the given state and for designing future states.

Organizational Context

Department, Team, Position

Figure 2. Conceptualization of business processes

Control

Decision rules, Exceptions,
Execution Times

States

of Objects, Forms and Files

Information

Objects, Services, Forms,
Fields, Files

Communication

 Locations, Actors, Channels,
Frequency, Duration

State of the virtual

Activity

procedure document

Process Types

5

The organizational structure is represented by orga-
nizational units (such as divisions, departments,
groups, positions etc.) and their relationships
(“reports to”, “is part of” etc.). In addition to model-
ling a particular structure MEMO encourages the
analyst to identify general rules for the division of
labor and its coordination. Organizational resources
are usually modelled as prototypical instances.
Examples for resources on this level are people,
buildings, furniture, machinery etc. Computer hard-
ware may also be considered as resource within the
organizational view. It is described by referring to
the information system view (see below). Features
which may be described within prototypical
instances include various types of cost, availability,
capacity etc. The number of resources and the detail
of their description is subject to individual configu-
ration. The external world is represented by relevant
roles (like lawyer, consultant, customer, etc.) and
services.

A business process is modelled as an ordered graph
of subprocesses, where a subprocess in itself can be
decomposed into other subprocesses. MEMO’s
emphasis is on office procedures. Therefore the
“material” that is operated on is information. Infor-
mation is grouped into three categories: objects
which reside on the computer based information
system, forms, and files. Information that is located
in the information system is described by referring
to the object model that is part of the information
system view (see below). Forms have a formal
structure, that is they contain fields, have well
defined states (like ’complete’, ’incomplete’, ’con-
sistent’), and a set of constraints defines the permis-
sible operations. Their content may be changed
within a subprocess. The term file is used to sum-
marize documented information that is read-only -
like office files, letters or journals. The information
a business process operates on is gathered in a “vir-
tual procedure document” that extends the tradi-
tional notion of a document in two respects: It may
contain references to information that is located
somewhere else. Furthermore it can be duplicated
and thereby processed in parallel. Each subprocess
is triggered by a certain state of the virtual proce-
dure document and produces one or more new
states.

Each process is assigned an organizational context
by referring to the organizational units which are
responsible for its execution. By default the organi-
zational context is propagated to the subprocesses
where it may be overwritten. Furthermore each pro-

cess can be characterized by business rules like:
“All subprocesses should be managed by the same
person.” The subprocesses can be described in a
very detailed way - depending on the effort that is to
be spent for analysis. Among the more important
features are: minimum and maximum execution
time, decision rules, required resources (for
instance: copy machine, printer), exceptions, people
(roles) needed to communicate with, communica-
tion media etc. In order to support the re-design of
business processes MEMO provides the analyst
with means to analyze existing processes and
design heuristics. The model of a business process
allows the analyst to detect media frictions (for
instance: information that originally resides in the
information system and is then being transferred to
a form), to identify bottlenecks, or to draw commu-
nication nets. By adding statistical data on work-
load, capacity and probabilities of the subprocesses’
possible outcome the model can be utilized to per-
form simulations (see fig. 8).

By focussing on processes the organizational model
serves different purposes: It helps to redesign the
business (if necessary), it helps to define the com-
munication technology required to improve effi-
ciency, and - last but not least - it supports to iden-
tify the objects/classes required to perform the rele-
vant tasks. As with the strategic view the concepts
of the organizational view are described with the
object-oriented meta model (see below) in mind.
Therefore they can be represented as an object
model which fosters their mapping on a tool.

2.3 The Information System View

The information system view includes both a model
of the existing system and the system that is to be
designed. They are separated into an object-oriented
conceptual model and a model of information sys-
tem resources (like hardware, networks, operating
systems). An object-oriented conceptual model
includes an object model and other models to
express dynamic aspects. Among the still increasing
number of object-oriented design methodologies (in
a survey we did last year we found more than forty
approaches) we felt most inspired by the ones pro-
posed by [Booch 90], [Rumbaugh et al. 90], and
[Jacobson et al. 92]. However, none of them was
satisfactory for our purpose. While Rumbaugh et
al.’ methodology suffers from being somewhat
superficial and not consequently object-oriented,
Booch’s approach seems to be overloaded by
details of various programming languages - which,

6

in our opinion, should not be part of a general meth-
odology for the design of conceptual models.
Jacobson et al. are primarily focussing on analysis
and put less emphasis on software engineering
issues occurring during design. (for a comparison of
important methodologies see [Frank 93], [Hong
93], [Monarchi 92]). Furthermore we were not sat-
isfied with the way dynamic aspects are modelled
within these approaches. State transition diagrams
are often suggested to capture dynamic aspects. At
first sight such diagrams seem to be appropriate for
modelling automated business processes, since they
allow the analyst to describe events and correspond-
ing state changes. They are however restricted to
events and state transitions which may occur during
the lifetime of objects of one class. Within an office
procedure however one usually needs objects of
more than one class.

2.3.1 Conceptualizing Object Models

While from a (re-)using programmer´s point of
view it is sufficient to describe an object solely by
the services it provides analysis and design require
a more detailed view. Within an object model one
defines classes and associations between classes or
between objects respectively. Like in most other
methodologies the outstanding features of a class
are attributes and services. An attribute is regarded
as an object that is encapsulated within an object.
We do not allow attributes - like [Coad 91] - to only
hold references to external objects that have an
existence of there own in the object space. An
attributes semantics is primarily defined by its class.
Furthermore a cardinality (using min-max notation)
may be assigned. Assigning a default value allows
for generating appropriate initialization operations.

Class

Name

Superclass

Comment

Value Set

Attribute

Service

Association

Trigger

Guard

State

Name

Comment

Parameter

Output

Precondition

Postcondition

Exception

Access-Priv.

Label

Name

InverseName

Type

Inverse-Type

Class

Cardinality

Name

Comment

Class

Cardinality

Default-Value

Access-Priv.

History

Label

Name

Invariant

Name

Event-Action

0,1

0,1

0,1

0,*

0,*

0,*

0,*

0,*

1,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

1,1

0,1

1,1

0,1

0,*

0,1

0,1

0,1

0,*

1,1

0,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

Figure 3. Part of the meta model for conceptualizing object models

Default View
0,*

7

Each attribute is also characterized by a history-
flag. Setting it to true means that every update
should be recorded somehow.

In order to allow for generating prototypical user-
interfaces it is possible to assign a default-view to
each class. A default view is either a widget or a
collection of widgets. One can also define a label
that is to be presented with the default view. Addi-
tionally features like size and font may be specified.
This approach is a first attempt to deal with the
complexity of user interaction. It cannot be com-
pletely satisfactory: the way a value of a certain
class is presented to the user often is not unique but
varies with the context of interaction.

In order to specify a service the designer may
describe a list of input-parameters (which can be
empty) where each parameter is characterized by its
class and its name. If a service returns a result it has

to be exactly one object. So it is sufficient to define
the class of this object. It is important to note that
such an object may be a composed object (like an
array, a container etc.) that contains many other
objects. A precondition in general specifies condi-
tions "under which a routine will function properly"
([Meyer 88], p. 114). In our model it can be defined
by referring to object or parameter states. For
instance: For a service that requires an object of
class ’Person’ as a parameter it may be necessary
that the service ’sex’ delivers the state ’male’.

A postcondition has to be fulfilled after the service
has terminated. Similar to a precondition it can be
defined by referring to an object state or to a state of
the object that is returned by the service. Each ser-
vice can be assigned a set of exceptions (like media
errors) which should be named in a unified way for
a whole object model. Thereby exception handling
can be defined for all involved objects in the same
way.

During the life time of an object there may be cer-
tain events and rules which go beyond the scope of
a single service. For this purpose we introduce trig-
gers and guards. A trigger can be generally defined
as a tupel consisting of an event and an action. The
event is specified by a condition that in turn is
defined by referring to attribute states or states of
objects which are returned by a service. The action
is defined by the service that has to be executed
when the event occurs.

ProcedureSupervisor

RiskEvalua-

InsuranceSupervisor

Manager

Employee

Clerk

Object Model
Repository

uses

controls

Figure 4. Integration of object model and office procedure models within an enterprise-wide repository

ProcedureManager

ProcessModels

ClaimsProcessing-

To give an example for a trigger: Whenever an
object of class ’customerAccount’ has a balance
less than x, the object should execute a service that
is suited to notify somebody who is managing the
account. A guard is a condition that has to be ful-
filled during the lifetime of any object of a particu-
lar class (similar to what [Meyer 88], p. 124) calls
"class invariant"). For instance: The value of
attribute ’retailPrice’ within objects of class ’Prod-
uct’ should never be lower than the value of
attribute ’wholesalePrice’.

8

Every class may have exactly one superclass.
Although there are a number of arguments in favor
of multiple inheritance we restricted our model to
single inheritance. We found that in most cases sin-
gle inheritance is satisfactory while multiple inher-
itance increases the complexity of an object model
and thereby makes it more difficult to maintain it in
a consistent way. On the instance level MEMO dis-
tinguishes between two types of associations: inter-
action and aggregation. However, for a conceptual
object model to be illustrative it is desirable to
allow for a more detailed differentiation. For this
reason each association has to be assigned a domain
level identifier. Such identifiers do not include any
semantics, they only improve readability of the
model and allow for enhanced retrieval capabilities.

In order to allow for smoothly integrating existing
elements - like applications or data structures -
MEMO suggests that the modeller regards them as
objects. Application classes are subclasses of the
class “Application” that provides attributes and ser-
vices to manage information like installation date,
version, cost etc. An application class is usually
modelled by the set of services it offers to the out-
side (which is rather poor for the average legacy
application) and details about the communication
protocol (for instance: OS-call, RPC, UDP or
CORBA). Existing data structures, such as relation
types of an RDBMS or a document file of a word
processor, are represented as dummy classes: They
do not encapsulate any attributes, instead they offer
services that allow to access an existing element.
For instance: class ‘WordDocument’ represents
documents produced by a certain word processor. In
order to integrate them with a more sophisticated
model one can use an association with the reserved
name “corresponds to”. For instance: “RelTypeCus-
tomer corresponds to Customer” or “WordDocu-
ment corresponds to CompoundDocument”. Some
existing applications use data that might be shared
with other objects. Whenever such a potential
source of redundancy is discovered it can be
expressed in the model using an association with
the reserved name: “should use”. For instance:
“AccountingSystem should use Customer”. To
avoid confusion about the implementation state of a
model it is important to assign one of four pre-
defined states to each class: “not implemented”,
“implemented”, “dummy”, “encapsulated”. Fig. 3
gives an overview of the concepts proposed for
designing object models. For a more comprehensive
documentation see [Frank 92], [Frank 94].

2.3.2 Modelling dynamic aspects

A methodology for modelling dynamic behavior
should allow for conveniently expressing temporal
and control (in other words: dynamic) aspects. It
should also help to avoid inconsistencies, like non
terminating cycles, tasks which cannot be reached
by any chance, deadlocks, etc. Unlike the object-
oriented methodologies mentioned above Peters
and Schultz [Peters 93] propose a modelling tech-
nique that allows for including objects of more than
one class. They use Petri nets where each transition
represents a state transition of an object of a particu-
lar class. Different transitions within a net may rep-
resent objects of different classes. Furthermore they
allow - different from traditional concepts - transi-
tions to have an execution time larger than zero.
Mapping transitions to operations of an object of a
certain class is attractive from a software-engineer-
ing point of view since it supports the idea of build-
ing procedures by ’glueing’ objects together (as it is
proposed in [Nierstrasz 90]). Nevertheless such an
approach has its deficiencies, too. It is important for
a model to allow for direct correspondence to famil-
iar conceptualizations of the relevant domain. Busi-
ness processes are not necessarily structured in a
way that there is always only one object operated on
within a subtask.

The approach we have chosen is similar to the one
suggested by Peters and Schultz in that we also use
semantically enriched Petri nets and allow transi-
tions to have an execution time larger than zero.
Our methodology however allows to explicitly
assign objects of many different classes to one tran-
sition. The information system model of a process is
very similar to the model of a business process
within the organizational level - and in fact may be
deducted from it. The main difference: On the infor-
mation system level a process is described only by
its automated parts. That implies tighter constraints
on the specification of the information being pro-
cessed: only information that is represented in the
object model can be regarded.

In order to provide the model with prototyping
capabilities it is necessary to enhance it with infor-
mation about a suitable user-interface. This infor-
mation can be deducted from those services
assigned to a subtask. The widgets needed to inter-
act with the services can be looked up in the object
model (see above). Since every suitable class in the
object model should have a default view assigned to
it, a prototypical user-interface for an activity can
be generated.

9

level of aggregation level of formalization

Resources Operations Results/ External System

Strategy

Organization

Information System

longterm

competitive

competitors

customers

suppliers

primary/support
human
capital

technology
edge

profits/losses

people
machinery

tasks
business

customers
suppliers
partners

productivity
motivation

qualitycostprocesses

services

processes
hardware
networks

OS
Objects

standards

customers
suppliers

productivity
reliability

maintainability
integrity

Figure 5. Selected concepts of different views and foci

Success Factors

activities

Procedure models are integrated with an object
model in two ways. First they refer to the objects
they use, second the management of an office pro-
cedure is done by objects that are specified within
the object model themselves. Fig. 4 shows how an
object model and office procedure models could be
represented within an enterprise-wide repository.

2.4 Integrating the Views

While it might be an intriguing vision to deduct the
model of the information system from the organiza-
tional model and the organizational model from the
strategic model, we did not even try to accomplish
such a level of integration. This is mainly for two
reasons. First: there is hardly general knowledge of
how to deduct the organizational concept best
suited to accomplish a strategic goal (which is also
the case for the relationship between organizational
model and information system model). Second:
usually a strategy cannot be developed indepen-
dently from organizational options which in turn are
influenced by information technology as well. For
those reasons MEMO allows one to explicitly link
concepts on different levels. Direct tight coupling is
the case, if a concept of a certain view directly cor-

responds to a concept of another view. For instance:
The concept “Customer” within the organizational
view corresponds to the class “Customer” within
the information system view - although the repre-
sentations may vary in detail.

The other extreme would be indirect weak coupling.
For instance: The goal “customer satisfaction” on
the strategic level could be first linked to a model of
the firm’s order processing on the organizational
level. From there one could establish a link to
objects within the information system view that
provide services compatible with certain EDI-stan-
dards.

3 MEMO-Center: The Design Environment

Designing enterprise models according to the pro-
posed methodology can hardly be accomplished
without appropriate tools: A complex model
requires support for browsing and searching.
Because of multiple integrity constraints mainte-
nance that is solely done manually jeopardizes a
model’s consistency to an unacceptable extent.
Finally it is impossible to do without tools when
prototyping is to be accomplished. For these rea-
sons we developed an environment based on the

10

MEMO framework. It was implemented using
Smalltalk-80 within the Objectworks® 4.0 environ-
ment on Sun4-workstations. High productivity
could be achieved by using additional class libraries
(see [Frank 92] for more details). The current ver-
sion runs under Objectworks® 4.1 and Visual-
Works® - on all platforms the appropriate Parc
Place Smalltalk machine is available for.

The environment consists of three main tools: The
Value Chain Designer (VCD) serves to design and
analyze models of a firm’s value chain. The Object
Model Designer (OMD) supports the specification
of object models. It provides various features to
search for certain elements of an object model and
to browse through the model. The Workflow
Designer (WFD) allows for conveniently modelling
business processes. It provides functions for simula-
tion, fast prototyping and organizational analysis.
The three tools are tightly integrated. The integra-
tion on the conceptual level has already been char-
acterized above. System integration is accom-

plished by locating the tools within one Smalltalk
image. The concepts managed by the tools can be
annotated by using an integrated hypertext system.

The VCD provides a browser through the different
elements of a value chain. The description of proto-
typical instances (like “human resource”) is sup-
ported by predefined value sets (like “high”, “aver-
age”, “low”) which can be modified interactively.
This is the case, too, for relationships between
activities. They can be characterized using an exten-
sible list of identifiers (like “supports”, “supported
by”, “contains”, etc.). In addition to a textual repre-
sentation relationships can be visualized in a graph-
ical way. Items managed within the VCD can be
associated to related items within the other tools.
For instance: ”activity uses business process”. The
VCD controls referential integrity of a value chain.
Furthermore it provides dialogs to guide with ana-
lyzing and re-designing a value chain.

Figure 6. User-interface of the Object Model Designer

11

According to the meta model described above the
OMD offers a number of different levels of abstrac-
tion. On the highest level class names are grouped
into categories. On the next level a class can be
assigned a list of attribute names, service names,
guard names, and trigger names. Selecting an
attribute, service, etc. causes the corresponding
window to pop to the front. It allows for a more
detailed description. Fig. 6 shows the window that
contains the template for specifying an attribute -
’dateOfBirth’ in the given example. Its class is
’Date’. The services which are provided by this
class are shown in a listbox. If one of these services
is needed for the class that is currently selected
(which is ’InsuredPerson’ in our example) it can be
pasted to the services-listbox of this class - a conve-
nient way to accomplish reusability. The OMD will
then establish a reference to this service.

In order to foster system integrity it is not possible
to type in a class name directly to characterize an
attribute, a superclass, or a parameter. Instead it is
required that the dictionary that contains all class
names is updated first. Then the name can be pasted
to the corresponding field. The OMD controls a
number of integrity constraints. It prevents the user

from deleting elements which are referenced by
other elements, from assigning superclasses or
classes of attributes in an inconsistent way, etc. The
graphical representation of the class hierarchy can
be used as an additional browser. The icons are
mouse sensitive and cause the focus to shift to the
selected class.

The main focus of the WFD is on business pro-
cesses - both for analysis (that is mainly the organi-
zational view) and design (organizational and infor-
mation system view). On the highest level of
abstraction the user can draw a business process
picking from predefined icons within a specialized
editor. When the procedure is described on this
level (see fig. 7), the user can ’zoom’ into it by
selecting an icon - either a subtask or a document
state. Within the example shown in fig. 7 the sub-
task ’Verification of substantial matter’ is selected.
Within the window titled ’Activity’ it can be char-
acterized by assigning execution times, an organiza-
tional unit, an organizational position, and possible
exceptions. Furthermore the classes (like ’Insured-
Person’, ’Policy’, etc.), forms, and files which are
needed as well as the involved roles can be listed in
this window.

Figure 7. User-interface of the Workflow Designer

12

Selecting an item causes a window with an appro-
priate template to pop to the front. Within the exam-
ple shown in fig. 7 this is the window in top right
position. It allows to pick the required services from
the selected class. For each service - or the object it
delivers respectively - it can be specified what it is
needed for: either for a form or for communicating
with an involved person. The example shows that
the service ’profession’ is needed for the ’Applica-
tionForm’ as well as for communicating with the
’InsuredPerson’ and the ’Expert’.

Other templates exist to specify the relevant infor-
mation within forms (fields together with an infor-
mal description of their purpose) or files (physical
location, subject of interest within the file) and as
well as the communication with involved persons
(channel, subject). These specifications are used to
generate a protocol which is shown in the right bot-
tom corner of the ’Activity’ window in fig. 7.
Another text-widget within this window presents a
template that can be filled to describe decision rules
relevant for the focussed activity. A selected docu-
ment state is specified in a similar way. First the
classes, forms, and files which are involved in this
state are assigned to it. Then these items have to be
characterized in a more detailed way. The state of
an object (which is represented by the name of its
class) has to be defined by naming a boolean ser-
vice that checks this state. That requires one to

enhance the class with this service by switching to
the OMD. For instance: An object of class ’Policy’
is required to be in state ’valid’. That requires a ser-
vice like ’isValid’ to be specified for this class. For
every form it has to be defined which fields have to
be filled in. A file is characterized by its physical
location and optionally the means of transportation
to get it to the clerk. In order to support the user and
to avoid inconsistencies the classes, forms and files
assigned to a document state are pasted to the sub-
task that is triggered by this state. The WFD can
generate a prototypical user-interface for every
activity - provided the default views have been
assigned to the corresponding classes in the object
model (see above). The widgets placed within such
an interface may be rearranged interactively. In
order to use the simulation features built into the
WFD it is necessary to first assign probabilities
(using percentage values) to the states produced by
every subtask. Furthermore it is required to type in
the workload as number of procedures in a time
period. After that the simulation can be started. Ani-
mation is accomplished by dynamically marking
the subtasks which are active. If the simulation
reveals any chances to improve the organization of
the procedure the net can be rearranged interac-
tively. Fig. 8 shows a snapshot of a simulation
where the subtask ’Verification of substantial mat-
ter’ has been expanded since it was found to be a
bottleneck.

Figure 8. Snapshot of an animated simulation

13

VCD

WFD

VCD

OMD

Analysis of competitive position and
design of corporate strategy

WFD OMD

WFD OMD

WFD OMD

Tool Stage

WFD OMD

Figure 9. The usage of MEMO Center during important development stages (this is a simplified
model!) and selected feedbacks between stages.

Identification and modelling of business processes

Identification and modelling of objects used within
the business processes

Design of an object model - including the integration of
existing components

Analysis and re-design of business processes.
Eventually refinement of strategy and object model

Providing prototypes, feedback from experts/users

The WFD also allows for generating a report on
detected media frictions and to graphically visualize
communication relationships. Fig. 9 shows which
tools are primarily used in the various stages of
enterprise modelling.

4 Conclusions

Different from most other methodologies for
object-oriented analysis and design MEMO not
only focuses on the information system in itself but
also on relevant strategic and organizational issues.
Thereby it fosters a smooth integration of an infor-
mation system with business processes and corpo-
rate strategies. Our experience with modelling
office domains within insurance companies indi-
cates that the proposed representations offer illus-
trative abstractions of an enterprise. This is espe-
cially the case for the representation of business
processes. Both system analysts and domain experts
intuitively understood the graphical notation.

Thereby it proved to be a valuable medium for start-
ing knowledge acquisition or object modelling
respectively. We found that asking about strategies
and processes is not only a prerequisite for organi-
zational change. It furthermore helps to identify
objects and specify their semantics. MEMO does -
of course - not guarantee to optimize the organiza-
tion of work. It can help however to reduce com-
plexity by providing an illustrative representation of
important aspects, by detecting certain types of
organizational misconception, and - last but not
least - promoting a sophisticated object-oriented
architecture of a company’s information system.

In the current version MEMO Center is restricted to
one Smalltalk image. Therefore the prototypical
workflow systems only simulate distribution. The
objects used within the prototypes are either imple-
mented directly in Smalltalk or refer to C-functions
which are linked with the virtual machine. Cur-
rently we are working on extensions that will allow

14

for partial generation of distributed workflow man-
agement systems. For this purpose we use HP’s
“Distributed Smalltalk”. It includes a CORBA
implementation according to the OMG guidelines.
MEMO Center will then allow for integrating any
existing component that offers an IDL-interface. In
order to allow for an automatic transformation of an
object model designed according to MEMO into the
OMG object model MEMO Center will be
enhanced with means to distinguish between inher-
itance and subtyping. A text book with a compre-
hensive documentation of the methodology and the
environment will be published by the end of 1994.

References

Booch, G.: Object-oriented design with applica-
tions. Redwood 1990
Coad, P.; Yourdon, E.: Object Oriented Design. En-
glewood Cliffs, NJ 1991
Davenport, T.; Short, J.E.: The New Industrial En-
gineering: Information Technology and Business
Process Redesign. In: Sloan Management Review,
Summer 1990, pp. 11-27
Dennis, A.R.; Hayes, G.S.; Daniels, R.M.: Re-Engi-
neering Business Process Modeling. In: Nunamaker,
J.F.; Sprague, R.H. (Ed.): Proceedings of the 27th
Hawaii International Conference on System Scienc-
es, Vol. IV. Los Alamitos, Ca. 1994, pp. 245-253
ESPRIT Consortium AMICE: CIM-OSA AD 1.0
Architecture Description. Brussels 1991
Frank, U.; Klein, S.: Three integrated tools for de-
signing and prototyping object-oriented enterprise
models. GMD Research Report No. 689, Sankt Au-
gustin 1992
Frank, U.: A Comparison of two Outstanding Meth-
odologies for Object-Oriented Design. GMD Re-
search Report No. 779, Sankt Augustin 1993
Frank, U.: An Object-Oriented Methodology for
Analyzing, Designing and Prototyping Office Pro-
cedures. In: Nunamaker, J.F.; Sprague, R.H. (Ed.):
Proceedings of the 27th Hawaii International Con-
ference on System Sciences, Vol. IV. Los Alamitos,
Ca. 1994, pp. 663-672
Hammer, M.; Champy, J.: Reengineering the Cor-
poration. New York 1993
Hassey, D.E.: Glossary of Management Tech-
niques. In: International Review of Strategic Man-
agement. Vol. 3, 1992, pp. 47-75
Hong, S.; Goor, G.: A Formal Approach to the
Comparison of Object-Oriented Analysis and De-

sign Methodologies. In: Nunamaker, J.F.; Sprague,
R.H. (Ed.): Proceedings of the 26th International
Hawaii International Conferenc on System Scienc-
es, Vol. III., Los Alamitos 1993, pp. 689-698
Jacobson, I.; Christerson, M; Jonsson, P; Overgaard,
G.: Object-Oriented Engineering. A Use Case
Driven Approach. Reading, Mass. 1992
Katz, R.L.: Business/enterprise modelling. In: IBM
Systems Journal, Vol. 29, No. 4, 1990, pp. 509-525
Keen, P.G.W.: Shaping the Future: Business Design
through Information Technology. Cambridge 1991
Meyer, B.: Object-Oriented Software Construction.
Prentice Hall 1988
Monarchi, D.E.; Puhr, G.: A Research Typology for
Object-Oriented Analysis and Design. In: Commu-
nications of the ACM, Vol. 35, No. 9, 1992, pp. 35-
47
Nierstrasz, O.; Dami, L.; De Mey, V.; Stadelmann,
M.; Tsichritzis, D.; Vitek, J.: Visual Scripting: To-
wards Interactive Construction of Object-Oriented.
In: Tsichritzis, D. C. (Hg.): Object Management.
Geneva 1990, pp. 315-331
Peters, L.; Schultz, R.: The Application of Petri-Nets
in Object-Oriented Enterprise Simulations. In: Nu-
namaker, J.F.; Sprague, R.H. (Ed.): Proceedings of
the 26th International Hawaii International Confer-
enc on System Sciences. Vol. III, Los Alamitos
1993, pp. 390-398
Porter, M.E.: Competitive Advantage. New York
1985
Porter, M.E.; Millar, V.E.: How Information Gives
You Competitive Advantage. In: Harvard Business
Review, July/August 1985, pp. 149-160
Rumbaugh et.al.: Object-Oriented Modelling and
Design. Hemel-Hempstead 1990
Scott Morton, M.S.: Strategy formulation methodol-
ogies. Cambridge, Mass. 1986
Sowa, J.F.; Zachman, J.A.: Extending and formaliz-
ing the framework for information systems architec-
ture. In: IBM Systems Journal, Vol. 31, No. 3, 1992,
pp. 590-616
Talwar, R.: Business Re-engineering - a Strategy-
driven approach. In: Long Range Planning, Vol. 26,
No. 6, 1993, pp. 22-40
Wiseman, C.: Strategy and Computers: Information
Systems as Competitive Weapons. Homewood, Ill.
1985
Zachman, J.A.: A framework for information sys-
tems architecture. In: IBM Systems Journal, Vol. 26,
No. 3, 1987, pp. 277-293

