
Abstract

This paper will present an approach that fosters a seam-
less integration of documents with corporate information
systems. It is based on a conceptually enhanced notion of
documents that promises more meaningful ways of proces-
sing documents and increased system integrity as well. The
approach resulted from enhancing an existing methodolo-
gy for designing object-oriented enterprise models as well
as a design environment that is based on it. It suggests to
widely abstract from current appearances of documents.
Instead it recommends to begin with focusing on business
processes. Analyzing the information required within a
business process results in a preliminary object model. Va-
rious templates and checklists will then guide the analyst
with identifying document candidates within the object mo-
del and specifying their semantics - also taking into ac-
count requirements that may result from providing trans-
formations into standardized document representations
such as SGML, HTML, EDIFACT, etc.

1. Introduction

For a long time documents have been of essential im-
portance to business firms. They capture a large amount of
information that is needed for decision making and for in-
ternal as well as for external communication. Currently we
observe that documents are gaining even more attention.
This is for different reasons. At first sight there is a techno-
logy push: There are new document-centered IT-systems
that promise to effectively support mission critical tasks.
An increasing number of vendors offer so called "docu-
ment management systems" which usually focus on scan-
ning, digitizing, and archiving paper documents. Often tho-
se systems are regarded as key technologies for enabling
companies to accomplish effective business (process) reen-
gineering. Another tremendous push is caused by the
growth of the internet, namely the World Wide Web, which
seems to become an outstanding medium for publishing
certain kinds of documents. Other technologies that heavily

rely on documents are workflow management systems,
groupware software, or Computer Supported Cooperative
Work (CSCW) systems in general. Both for document ba-
sed software as well as for document exchange standards or
wide spread proprietary concepts are of crucial relevance.
Currently a few standards are already in use (like SGML
[8], HTML [15], EDIFACT, MIME), while the practical re-
levance of others (like ODA/ODIF, [2]) is questionable. In
addition to that there are new concepts as well as corre-
sponding technologies that promote an essential new way
of looking at documents (like OpenDoc [17] or OLE [5]).

Beside reacting on pushing technologies the shortco-
mings of the ways documents are currently dealt with are
another reason to focus on documents. In contrast to widely
accepted concepts and technologies applied for transaction-
oriented systems documents are often handled in a cumber-
some and hazardous way - although this aspect may some-
times be hidden by the convenience offered by state of the
art text processors and spreadsheet calculators at first sight.
However, a closer look at those products reveals that they
are hardly sufficient to establish corporate document mana-
gement systems that efficiently support cooperative work
and that are efficiently to maintain at the same time.

There is a remarkable amount of recent publications (for
instance: [9], [13], [18]) that deal with documents from va-
rious perspectives. While all of these research areas focus
on important aspects of document handling in general,
none of them however is precisely dedicated to concepts
that aim at a tight integration of document storing and pro-
cessing both with a company’s business processes and its
overall information system.

2. The Current Situation

Within about a decade electronic documents have beco-
me a natural part of today’s office work. More and more
business professionals are skilled in using document pro-
cessing software in a productive way. Acting on competiti-
ve markets vendors make a great effort to design products
such as text processors, graphical editors, spread sheet cal-

Enhancing Object-Oriented Modeling with Concepts to
 Integrate Electronic Documents

Ulrich Frank

Universität Koblenz-Landau
Rheinau 1, D-56075 Koblenz, Germany
 E-mail: ulrich.frank@uni-koblenz.de

Published in: Proceedings of the 30th HICSS, vol. VI, ed. by R. H. Sprague,
Los Alamitos, Ca.: IEEE Computer Society Press 1997, pp. 127-136

culators, and additional utilities like text retrieval software
according to their customers’ needs. State of the art systems
provide a wide functionality on an impressive level of con-
venience. At first sight it seems that there is only little left
for further improvements. However, appearances are de-
ceptive: Dealing with electronic documents often suffers
from severe misconceptions that may have a considerable
impact on a company’s overall performance. With new
communication technologies like electronic mail, EDI, or
the World Wide Web they will cause even worse problems.

2.1 A Scenario

Consider the following scenario. A product manager
with a vendor of computer hardware is using state of the art
technology for preparing and handling various documents
he is exchanging with customers, sales people, and other
executives. Information on products and promotions has to
be regularly sent to customers and sales people. Large parts
of the documents for both groups of addressees are identi-
cal (which is, however, not true for the layout). Furthermo-
re some of the content can also be used for internal reports.
For this reason the product manager’s assistant is glad that
there is a feature like copy&paste, which is also needed to
import data (like product features and prices, digital images
of products, etc.) that are stored in a central database which
can be accessed almost transparently. Sometimes docu-
ments include references to files that are used to store
spread sheets or digital images - the latter gaining more and
more importance with the company’s recent effort to digi-

tize almost any incoming letter. Establishing such refe-
rences can be done in a rather convenient way (at least in
case the file’s location is known).

Since not everybody in our little scenario is using the
same technology (or has the same preferences respectively)
some transformation has to be done. There are a few pro-
gressive customers who prefer electronic mail. While most
of them wish to get electronic documents in a representati-
on they can edit with the text processor of their choice, not
everybody has electronic mail software available that can
handle MIME attachments. That makes it necessary not
only to generate a number of different file formats but also
to encode them into a stream of transmittable characters
which then has to be included into an electronic mail mes-
sage. And of course there is the Web: Since the company
has decided to use the internet for enriching its communi-
cation mix the latest information on products has to be pla-
ced on the Web as well. The new version of the assistant’s
text processor features a converter that generates HTML
sources on the fly. However, experience gathered so far
shows that those sources do not result in satisfactory Web
pages. Manually editing them is usually rather time consu-
ming - with the effect that those pages are not always up to
date.

Various executives have to be provided with printed
monthly reports. Those reports all have a similar structure.
There are some differences in the content (for instance: one
manager always wants to have certain information on a par-
ticular customer to be included in his report). Furthermore
the executives have different preferences for the graphical

Fig. 1: Creating Documents in a State of the Art Environment

Semantics

Redundancy

RDBMS

Various File-Formats

ASCII TIFF
EPSWORD

„Imaging“

PS

WORD

HTML

RTF

Applications
Resulting

C
op

y&
P

as
te

Aggregated
Document

Formats

presentation of data. Those variations keep the assistant
busy - sometimes too busy: Occasionally it happens that a
report does not correspond to particular requirements. Sear-
ching for documents is supported by a text retrieval system.
While it is amazingly fast, it is not always able to find the
documents the user has in mind. This is the case whenever
the user does not know a characteristic text pattern, but only
remembers properties such as "a bar chart on the revenues
for laser printers from 1990 to 1994".

2.2 Reasons for present problems

This little scenario, which is hardly exaggerating the
complexity that arises from the way documents are produ-
ced and handled today, illustrates a somewhat bizarre situa-
tion: Even with modern equipment and skilled users state of
the art document handling is afflicted with severe pro-
blems. Despite the convenient use of copy and paste inte-
gration with existing data happens on a rather low semantic
level - resulting in a great amount of redundancy. This is
not only a threat to system integrity but also a waste of re-
sources required for updating redundant information - not
to speak of the cost that is caused by inconsistent docu-
ments. Consider for example a document that contains data
representing a customer. In this case it will certainly make
a difference whether this data is simply characterized as an
array of bytes which might be interpreted in various ways
or as an instance of a concept "Customer". This example
also illustrates the low level of integration provided by to-
day’s platforms. Imagine you had copied a number of
strings representing a customer from a database to a report
you prepare with a text processor. As soon as the data is pa-
sted into the document it will loose most of its semantics.
Within the text processor there is no customer any more. So
there is no way to get access to related information (like re-
venues) from within the text processor. Furthermore you
may change the strings representing the customer produ-
cing an inconsistent state (for instance by overwriting the
average monthly revenue).

Furthermore the storage technology is not appropriate:
While it has been the general consensus for many years,
that corporate data should be stored and managed by data
base management systems this is different with documents:
They are usually still stored as files - with all the shortco-
mings that file systems impose on integrity and security.
There is still a remarkable amount of time consuming ma-
nual work which in principle could be automated. For in-
stance: Transforming a document to a number of acceptable
web-pages. Restricted retrieval capabilities are another ex-
ample. Another severe problem is the lack of standardized
Representations: Exchanging documents is often difficult
since not everybody is using the same representation. A si-
tuation that becomes worse with an increasing number of
alternative media which can be used to spread documents.

2.3 The need for conceptual modeling

To accomplish both a high level of integration and of it
is necessary to enrich electronic documents with an appro-
priate amount of semantics. Furthermore it has to be taken
into account that documents are often in a way reifications
of business processes (the German word for process - "Vor-
gang" - can also be used to denote the document that is sub-
ject of a process). For this reason existing documents may
symbolize business practices that ought to be overcome.
Taking them for granted will hinder the discovery of alter-
native ways to organize a business process. In order to ex-
ploit the potential offered by electronic documents it is ne-
cessary to widely abstract from traditional notions of docu-
ments and familiar ways to use them. For this purpose we
need an appropriate conceptualization of electronic docu-
ments, and - based on that - an approach to design concep-
tual models that are suited to provide a semantic foundation
to integrate data with documents.

From a general point of view traditional data as well as
documents can be conceptualized as objects or classes re-
spectively - an idea that has been discussed for long, espe-
cially in the area of office automation (see for instance [12],
[19]). A document as an object would have a structure its
data is stored in and a behavior that is defined by the opera-
tions available for accessing, manipulating, and maybe pre-
senting the encapsulated data. Both the structure and the
behavior would be specified/implemented in the class a
particular document is an instance of. Furthermore one
could take advantage of generalization/specialization - for
example with specializing "MonthlyReport" from "Periodi-
calReport". Like any object a document may be composed
of other objects. A document implemented as an object
would allow for operations like "search all documents that
contain revenues" or "substitute a bar chart representation
with a pie chart". Conceptualizing documents as objects
would also allow for creating so called hypermedia- or mul-
timedia-documents: Objects may have various references
to other objects and they may be visualized in any way that
seems to be appropriate for the information they provide.
From a software-engineering point of view it seems to be
sufficient to regard electronic documents as objects. Howe-
ver, for designing conceptual models of application doma-
ins it is not advisable to treat objects and documents as syn-
onyms. In order to take into account the role documents
play for organizing and coordinating office work it seems
to be more appropriate to characterize documents as objects
with special features. For objects that serve as documents it
is not sufficient to manage the information they encapsula-
te. The way the information is presented is of essential re-
levance, too. This includes basic presentation modes (such
as text, graphics, video, audio) as well as the overall layout
- which may be varying depending on user preferences. So-
metimes documents have to be created for legal or institu-

tional reasons. Furthermore the notion of a document is es-
sentially associated with the proof of evidence. That im-
plies measures to prove the identity of the author(s) or the
person(s) whose interests and intentions are involved. Do-
cuments are usually media for exchanging information.
This requires means to represent their content in a way that
gives the receiver an acceptable chance to interpret it accor-
ding to the sender’s intention. This suggests to provide
transformations into appropriate standardized representati-
ons for electronic documents.

While an object-oriented approach in general seems to
be appropriate, general object-oriented modeling methods
([4], [10], [15]) are not sufficient for our purpose: They lack
enhancements that support the specification of special do-
cument. Furthermore they do not include specific concepts
to analyze and - if required - to redesign business processes.
Dedicated document modeling methods (like [9], [16]) on
the other hand primarily focus on describing documents wi-
thout regarding associations to other objects within an in-
formation system. They do not provide any support to mo-
del business processes as well. Standardized representati-
ons of documents such as SGML or ODA/ODIF are some-
times recommended as the key to effective corporate docu-
ment management (for instance: [18]). They are of crucial
importance for efficient information exchange (see above)
and for the use of mass produced software as well. Howe-
ver, they are certainly not suited for designing conceptual
models.

3. A methodology for the conceptual design of
integrated document management systems

In order to allow for illustrative object-oriented mode-
ling of information systems that support a tide integration
of documents and other objects we used an existing metho-
dology for object-oriented enterprise modeling that we had
been working on for a few years already. It includes con-
cepts for analyzing business processes and information
flow within office domains. For this reason it is in principle
well suited for describing the information residing in elec-
tronic documents. Applying the methodology however re-
vealed that it would be very helpful to take into account the
special concepts and requirements related to documents.
For this reason we enhanced the methodology as well as the
development tool that is based on it with document-orien-
ted features.

3.1 Multi Purpose Enterprise Modeling
(MEMO): An overview

Unlike other object-oriented methodologies (like [4],
[10], [15]) MEMO (Multi Purpose Enterprise Modeling) is
not only focusing on software or information systems in ge-

neral. Instead it provides a framework for coordinated mo-
deling of business information systems, a company’s orga-
nization, and corporate strategy (see [6], [7]). MEMO is ac-
companied by a development environment (MEMO Cen-
ter) that allows the user to navigate through the views of an
enterprise model on various levels of detail. MEMO Center
has been implemented in Smalltalk, using the Visual-
Works environment. It controls a model’s integrity and
allows for simulation and fast prototyping. MEMO is based
on the assumption that an enterprise model provides both a
foundation for integrated information system and a medium
to systematically monitor and improve a company’s perfor-
mance. It suggests to start with defining the corporate stra-
tegy. For this purpose it provides modeling concepts that
are based on Porter’s value chain approach. A systematic
decomposition of the value chain will then help to identify
core business processes. Modeling business processes is of
crucial importance for applying MEMO. Not only that this
is the prerequisite for organizational redesign, it also fosters
the identification of objects. A business process is modeled
as an ordered graph of tasks, where a task in itself can be
decomposed into other tasks. A task requires, operates on,
and produces information. Information is grouped into
three categories: information which resides on a compu-
ter based information system, forms, and files. Forms
have a formal structure, that is they contain fields, have
well defined states (like ’complete’, ’incomplete’, ’consi-
stent’), and may be a set of constraints which define the per-
missible operations. Their content may be changed within
a task. The term file is used to summarize documented in-
formation that is read-only - like office files, letters or jour-
nals. The information used within a business processes
serves to identify object candidates for designing a pre-
liminary object model.

Each process is assigned an organizational context by
referring to the organizational units which are responsible
for its execution. Furthermore each process can be assigned
business rules like: ”All tasks should be managed by the
same person.î The tasks can be described in a very detailed
way - depending on the effort that is to be spent for analysis.
Among the more important features are: minimum and ma-
ximum execution time, decision rules, required resources
(for instance: copy machine, printer), exceptions, people
(roles) needed to communicate with, communication media
etc. In order to support the re-design of business processes
MEMO provides the analyst with means to analyze existing
processes and design heuristics. The model of a business
process allows the analyst to detect media clashes (for in-
stance: information that originally resides in the informati-
on system and is then being transferred to a form), to iden-
tify bottlenecks, or to draw communication nets. By adding
statistical data on workload, capacity and probabilities of
the tasks’ possible outcome the model can be utilized to

perform simulations.
System design aims at refining and formalizing the ob-

ject model resulting from analysis. Among others this
includes the specification of attributes and services, the re-
finement of generalization/specialization hierarchies, and
the specification of transactions. Furthermore it may be ne-
cessary to conceptually integrate existing data and applica-
tions by encapsulating them within appropriate objects. In
order to minimize semantic gaps between analysis and im-
plementation the concepts used in the different phases (like
value chains, business processes, organizational context)
are all defined in a common object-oriented meta model.

3.2 Document-oriented enhancements

Tailoring MEMO for the design of corporate document
management systems implied to take into account a number
of requirements. First it was necessary to introduce a notion
of electronic documents that includes essential document
semantics without being restricted by the traditional notion
of paper-oriented documents. Based on such a conceptuali-
zation a specialized modeling methodology should help
with the identification of document candidates and the de-
tailed specification of document semantics. Since the pre-
sentation of information is essential for documents it is
desirable to support the design of appropriate presentations
on a conceptual level already. At the same time the metho-
dology should help with preparing for efficient and consi-
stent mappings to the relevant standard representations.

For the purpose of conceptual modeling we define elec-
tronic documents as (composed) objects with the following
characteristics:
• they have a specific meaning within a certain context of

action - like a business process.
• they serve to coordinate cooperative work within this

context. That includes the exchange of information bet-
ween participating actors.

• they help to record the way this work is done - thereby
allowing to inform about the present state of a process
or relevant states of the past. This function may be im-
plied by legal or institutional regulations.

• furthermore a document provides it’s users with one or
more modes to present and optionally to manipulate the
encapsulated information.
Both the idea of editing objects within a document and

the use of object references are essential properties of a ra-
dically new approach for designing and using information
systems: It suggests an enhanced concept of a document to
become the general metaphor for interacting with object-
oriented information systems, thereby overcoming the tra-
ditional notion of an application. A document contains all
the objects relevant within a particular context (a task, pro-

ject, etc.). Depending on the user’s access rights the objects
can be viewed or edited within the document. OLE2 as a
proprietary technology (see [5]) gives a first impression of
these future systems. OpenDoc, a technology propagated
by several different vendors goes one step further: it provi-
des a layer on top of various operating systems that will al-
low - provided certain preconditions are fulfilled - to ex-
change documents together with the embedded objects wi-
thin heterogeneous environments (see [13], [17]). The con-
cept of electronic documents suggested above is compati-
ble with these new technologies. Thereby the investments
in conceptual models should be protected against future
technological changes.

3.3 Identification of document candidates

The purpose of analysis is to get a deep understanding of
the business functions that have to be fulfilled in the rele-
vant domain. We found that often it is not helpful to ask
what information or objects are needed at first place: Nor-
mally people will not be able to give a complete and sound
picture, and - more important - by only looking at informa-
tion you have hardly any measure how to evaluate the way
it is used. Instead focusing on processes proved to be more
promising, since most business professionals seem to pre-
fer process- or task-oriented ways to conceptualize office
domains. At the beginning of analysis we recommend to
widely abstract from documents. Instead one should con-
centrate on information content and essential functionality.
This will result in models of business processes that incor-
porate any information that is relevant - no matter whether
it may reside within a computer system or on traditional
media. Those models are then to be analyzed in order to
overcome present redundancies and media clashes. There-
by it should be found out whether and how information that
currently resides outside computer systems is to be digiti-
zed. In order to prepare for the following design phase it is
now time to abstract from that information, that has to be
kept on traditional media. The process model thereby beco-
mes a workflow model.

The information that is required and produced within a
workflow now has to be described within an object model.
Typically a task within a workflow operates on objects of
more than one class. For this purpose we introduce the con-
cept of a “context specific object collection”. It is not only
specified by the semantics of the contained objects. Fur-
thermore the objects’ states have to be taken into account,
too: A task is triggered by a certain state of a context speci-
fic object collection and may produce one or more other
states of it. Other context specific object collections are
used to specify the units of information that are exchanged
with other actors.

Only now it is time to shift the focus to documents. The
first candidates for becoming documents are the context

specific object collections that are required and produced
by tasks within a workflow. Their function is to provide the
information that is worked on within a workflow, and - li-
terally - to document the state of the workflow. Other can-
didates are the object collections that serve to exchange in-
formation between the participating actors. In order to de-
cide whether detected document candidates should be in
fact conceptualized as documents they have to be checked
against the essential document features (see 3.2). Besides
those logical document candidates one has to take into ac-
count that sometimes documents have to be created for le-
gal or institutional reasons. The definition of their logical
structure, their layout, or the media they have to be presen-
ted on can be more or less restrictive. Examples for docu-
ments of this kind are tax forms, contracts, dissertations - or
papers submitted to a conference. In other words: Those do-
cuments are not primarily a vehicle to fulfill a task. Instead
their creation is a task on its own. This implies that with
those documents it is hardly possible to abstract from pre-
sent occurrences - at least in the short run.

3.4 Specifying document semantics

Analysis will result in model of future workflows that
contain references to a preliminary object model as well as
descriptions of possible document candidates. Furthermore
it specifies the object collections that are to be exchanged
with other actors or machines. The design phase aims at
formally refining these models in greater detail. In general
this requires attributes to be assigned and specified by de-
fining a type or class as well as other constraints proposed
by MEMO´s object model. The services, too, will be speci-
fied in more detail by assigning pre- and postconditions, ex-
ceptions possible during execution, etc. (see [7]). Further-
more the generalization/specialization relationships bet-
ween classes have to be defined - as well as the associati-
ons between objects (for instance: InsuredPerson uses Con-
tract). The document candidates have to be conceptualized
as classes. Those classes have to be enriched with docu-
ment-specific semantics. This includes the specification of
additional information, the definition of layout and interac-

Accident

InsuredPerson

OtherParty sex

firstName

age

lastName

required objects
services required

from objects
actors to send context
specific information to

Manager

Broker

Insured Person

InsuredPerson->lastName
InsuredPerson->firstName

Accident->date
Accident->time
Accident->location

OtherParty->lastName
OtherParty->firstName
OtherParty->sex

•

context specific object collection

1

Objects (CORBA)

SGML

RTF

Postscript

applicable standards

ODIF

SGML

EDIFACT

Objects (CORBA)

standards

HTML

RTF

1

n

Postscript

Fig. 2: Deriving document candidates from workflow models

n cardinalities

task

context specific object collection

external communication

collect into

tion-semantics as well as a conceptual support for standard
representations/protocols. Furthermore it may be necessa-
ry to specify classes that allow to encapsulate existing do-
cument files and document editors.

In addition to the information specified for the objects
within the context specific object collections it may be ne-
cessary to add document-specific information - like date
and/or time, a document title, the name of the author or tex-
tual comments. For any of this additional information it has
to be decided whether it can be taken from existing classes
or from classes still to be added to the object model. For any
information it has to be defined whether it’s value or it’s
object-reference should be copied into the document.

In order to prepare for a convenient definition of the lay-
out associated with a document class MEMO allows for en-
hancing the class description with presentation specific de-
tails that, however, are not restricted by the limitations of
static read-only media. Each class an attribute is declared as
can be assigned a default presentation (like a "textView")
and a label that is to be presented with an instance of the at-
tribute. Objects may also include services other than those
that simply provide access to attributes - for instance: a ser-
vice that calculates a person’s age from his date of birth. To
cover the presentation of those services as well, their input
and output objects can also be assigned a default view.
With this additional semantics in place MEMO Center al-
lows to generate a preliminary user interface (in other
words: a default presentation) for a document class. The ge-
nerated layout may then be modified manually - the win-
dow size can be changed, as well as the size and position of
widgets.

Notice that until this point there is no need to specify the
medium (like telephone, fax, e-mail, etc.) that is used for
transmitting a document. This abstraction is for a good rea-
son: Something that is sent as fax today may be sent as a
MIME-mail tomorrow or as an object the day after tomor-
row. Apart from this abstraction it is a good idea to assign
those protocols to a document class that could in principle
be applied to represent it, because this is rather a conceptual
than an implementation decision (see fig. 4 for an examp-
le). The complexity of this decision may increase when one
standardized representation is embedded within another.
For instance: an order as an EDIFACT message embedded
in an ODIF document (for a detailed example see [1]).

Currently we mainly focus on three representations/pro-
tocols: The interface description language (IDL) proposed
by the Object Management Group (OMG), SGML and HT-
ML. In order to preserve as much document semantics as
possible the OMG’s IDL is the first choice: In principle it
allows to wrap a standardized interface around an existing
class implementation without changing it’s semantics. The
CORBA (Common Object Request Broker Architecture)
technology proposed by the OMG ([3]) will then allow for
transparent communication within distributed heterogene-

ous environments. The object model proposed by MEMO
contains the information that is necessary to define such an
interface (like class hierarchies, classes of attributes and si-
gnatures of operations). For this reason an IDL-interface
does not require additional specifications. Instead MEMO-
Center allows to directly generate IDL-code from the object
model.

Mapping a document to SGML can hardly be accom-
plished without additional specifications. This is for va-
rious reasons. SGML requires the state of an electronic do-
cument to be represented as a sequence - according to a spe-
cific syntax. A document class per se does not contain clear
information about how to create such a sequence from it’s
instances. Since SGML does not allow to represent various
data types there has to be an appropriate mapping of the ob-
jects delivered by a document’s services to the strings that
are to be used within a standard representation. Finally it
has to be taken into account that a specific SGML docu-
ment usually does not require all of the information provi-
ded by an instance of a document class. For example: The
document class “ClaimEvaluation” (see fig. 3) allows to ac-
cess all the services offered by the embedded object “Bro-
ker” - like address, number of employees etc. A SGML-re-
port prepared for a department manager will probably not
contain these details. In order to specify the mapping to
SGML MEMO suggests the following steps:
• MEMO Center parses the user-interface generated for

the document class, selecting the read-only services. It
then takes the names of the selected services and the
class-names of the embedded objects they belong to as
defaults for creating corresponding SGML tags. The
tags are ordered in a way suggested by the position of
the corresponding widgets within the user-interface.
The tool assigns the tags with cardinalities according to
the cardinalities specified in the object model (see
“firstName” in fig. 3). In order to generate a preliminary
DTD MEMO Center uses a generic DTD template that
is then initialized with the tags and default element ty-
pes (usually PCDATA).

• The default tags created by the tool as well as the ele-
ment types may now be changed in order to correspond
to existing conventions.

• Since a user-interface is not a sequential medium the de-
fault mapping outlined above may be partially arbitrary.
If the elements of the generated DTD are ordered in a
way that is not acceptable, it can be manually edited -
resulting in a final DTD that is stored within the object
model. The tool prevents to delete services from a class
as long as they are referenced by a DTD.
The final DTD now defines how to map an instance of

the document class to an instance of the DTD. MEMO Cen-
ter stores the associations between tags and corresponding

services that deliver the information that is necessary to in-
itialize the SGML document. Fig. 3 illustrates this mapping
in a simplified way. Based on the specification MEMO
Center generates the code that is necessary to perform the
mapping (that includes, for instance, transformations of
non-string objects delivered by the selected services into
strings required for SGML documents).

Different from SGML HTML implicitly includes lay-
out-semantics. Although HTML is originally based on
SGML it is possible to map an instance of a document class
to an HTML document without additional specifications.
As outlined above MEMO Center allows to generate proto-
typical user interfaces for any class. The specification of a
prototypical user interface can now be used to generate a
corresponding HTML document. It has to be taken into ac-
count however that not all of the widgets can be represented
in HTML in an equivalent way. This approach to generate
HTML can be find in a similar way in commercial software
like VisualWave.

So far documents within the object model have been
specified in a top down approach. However, usually it is
also necessary to still use existing applications and the data
structures they operate on. In order to take account of such
existing components it is necessary to specify classes that
provide a conceptual description of those components. For
instance: class ‘WordDocument’ represents documents
produced by a certain word processor. In order to integrate
them with a more sophisticated model one can use an asso-

ciation labeled with the reserved denotation ”represents”.
For example: ”WordDocument represents Document”. Do-
cument could then serve as a dummy class that would dele-
gate to the services provided by WordDocument. Other
classes would serve to wrap existing files and applications.
Although a conceptual model is a prerequisite for integrati-
on, it does not guarantee a satisfactory solution: Often the
interfaces provided by existing components are rather poor.

4. Remarks on the architecture of integrated
document management systems

From our point of view the notion of an integrated docu-
ment management system is misleading. Our vision is cha-
racterized by integrated object systems where some objects
may have the special semantics that makes them documents
(see 3.2). The objects would be stored in a central object
management system that would allow the users to interact
with the objects via context specific (we could also say: do-
cument-oriented) user interfaces in a distributed heteroge-
neous environment. The object management system would
control the constraints implied by the object model it is ba-
sed on. The exchange of information would be accom-
plished via the transmission of objects. This level of com-
munication would be supported by reference object models
on the application level - like the standardized business ob-
jects planned by the OMG. However, how does this vision
relate to current situation? Dealing with documents today

Fig. 3: Mapping a document class and it’s instances to SGML

<claimEvaluation>
<addressee>
<firstName>John
<lastName>Simpson
<street>620 East Street
<poBox>9125
<city>Stamford, Conneticut 06904
<subject>Comment on claim caused by accident
from <date><year>1995<month>1<day>15</date>
<salutation>Dear Mr. Simpson
<introduction>we would like to inform you about our...
claim filed by <person firstName="John" lastName ...
<accidentReport

•

<!DOCTYPE claimEvaluation [

<!ELEMENT claimEvaluation - - (addressee,
subject, salutation, introduction,
accidentReport, decision) >

<!-- some general purpose elements -->

<!ELEMENT freeText O O (#PCDATA) >

<!ELEMENT person - O EMPTY >
<!ATTLIST person
firstName+ CDATA #REQUIRED
lastName CDATA #REQUIRED
dateOfBirth CDATA #REQUIRED
sex (male | female) #REQUIRED >

•

InsuredPerson
lastName
firstName
dateOfBirth

•

Broker

OtherParty

uses

uses

uses
MEMO Center1. generate default DTD

from document class
and generated user in-
terface

3. generate instance
from instance of docu-
ment class by refering
to DTD

ClaimEvaluation

user interface

2. manually edit DTD

usually implies the use of proprietary editors - with proprie-
tary file formats. They are hardly suited for an efficient in-
tegration into open object-oriented information systems.
The only chance to overcome the burdens imposed by pro-
prietary editors in the short run are standards like SGML -
may be DSSSL (Document Style Semantics and Specifica-
tion Language, [18], pp. 115) as well - and HTML. With the
tremendous popularity of the web and an increasing awa-
reness of the benefits imposed by SGML more and more
vendors offer support for HTML and SGML. This may al-
low to abstract from the peculiarities of proprietary formats
in future information systems. However, the user of such a
system would usually not directly edit HTML or SGML co-
de. In order take advantage of the highest semantic level
that is appropriate within a given context he would rather
interact with objects. In the ideal case those standard repre-
sentations would be created and maintained transparently.
They would only serve to exchange information and to use
existing software. They would however not be used to store
information - very much like the use of Postscript today:
generate the representation for a temporary purpose and
then forget about it.

The number of standard representations to be supported
by a system may vary in time. For this reason it is a good
idea to separate domain objects from those objects which
are responsible for the mapping to the standard representa-
tion. The domain objects should not have to know which
standard representation depends on them. This design chal-
lenge is very similar to the task of managing user interfaces.
For this reason we have prototypically implemented an ar-
chitecture, that is based on the Model View Controller
(MVC) concept used in Smalltalk ([11]). It supports a trans-
parent mapping to SGML. Currently we do not use a con-
troller object because it is not intended to update the model
by changing the SGML-representation. Every SGML docu-
ment is managed by an instance of the class “SGMLDoc-
Manager”. This class provides a functionality that is similar

to a view within MVC. Every instance of the class subscri-
bes to certain aspects within the model. Whenever the mo-
del sends a notification that one of these aspects has chan-
ged, the document manager asks the model for the new
state by sending the message that corresponds with the par-
ticular aspect. It then maps the change to it’s SGML docu-
ment. There are two basis approaches to perform the map-
ping: generate the whole structure or update an existing
structure by propagating the elements that have changed.
Since the SGML-representations are either as files or as st-
reams within an ODBMS an efficiently updating them is
hardly possible. Therefore SGMLDocManager always ge-
nerates a new structure, replacing the existing one. In case
the mapping should only be performed at a explicit request
by the user, the document manager would only subscribe to
an aspect that relates to a specific user action (like pressing
a “Print” button).

Treating documents as composed objects results in a no-
tion of documents, that is somewhat different from the one
proposed by technologies like OpenDoc. It suggests to
challenge the holy WYSIWIG metaphor: While user-in-
teraction with objects implies a (graphical) interface, that
does not necessarily mean to always take into account the
layout of the document the object is embedded in. This is
for various reasons. An object may be embedded in many
documents, each of them presenting it in different ways. In
these cases it does not make much sense to put emphasis on
WYSIWYG when editing an object. Different users of a
document may have different layout preferences. On the
other hand there may be unified corporate layout regulati-
ons that do not leave any space for individual variations. Fi-
nally the traditional argument against WYSIWYG: Why
should a user, who is usually not a layout expert, waste his
time with creating awkward document layouts?

generate

update

Standard
Representations

Document Management
Objects

Domain Objects

Model
„View“

change-messages

update-messages

Fig. 4: Adapting MVC for transparent mapping to standard representations

5. Conclusions

The present notion of a document is still essentially in-
fluenced by the idea of printed paper. While many compa-
nies are currently in the process of scanning existing paper
documents, the resulting digital images do not provide an
acceptable orientation for efficient information systems:
They are only a symptom of a temporary migration phase -
nevertheless this migration often causes substantial invest-
ments. The current hype about the web and HTML respec-
tively as well as today’s fancy document editors can hardly
hide the fact, that something like document management
does hardly exist. Instead there is the management of files
with unknown content. In order to prepare for information
systems that integrate documents and data on a high seman-
tic level it is necessary to design appropriate conceptual
models. Those models should also help with redesigning
the organization of cooperative work in order to fully ex-
ploit the potential offered by electronic documents. While
in principle an object-oriented conceptualization of docu-
ments seems to be very promising, general object-oriented
modeling methods (like [4], [10], [15]) lack concepts to
model documents and the application domains they are
used in. Enhancing MEMO with document-oriented con-
cepts proved to be a helpful approach so far. We have app-
lied the methodology to design and to prototypically imple-
ment an object-oriented information system for our institu-
te. The implementation was mainly done with Visual-
Works and Gemstone.

References

[1] Acebron, J., Appelt, W., Including Application Specific In-
formation into ODA Documents: A Case Study for EDIFACT
Messages and STEP Product Model Data. Resarch Paper
No. 812, GMD, Sankt Augustin, 1994

[2] Appelt, W., Document Architecture in Open Systems. The
ODA Standard. Springer, Berlin, Heidelberg et al., 1991

[3] Ben-Natan, R., CORBA: A Guide to Common Object Request
Broker Architecture. McGraw-Hill, New York et al. 1995

[4] Booch, G., Object-oriented Analysis and Design with appli-
cations. 2nd ed., Benjamin Cummings, Redwood/CA., 1994

[5] Brockschmidt, K., Inside OLE2. Microsoft Press, Redmond/
Washington., 1993

[6] Frank, U., "An Object-Oriented Methodology for Analyzing,
Designing, and Prototyping Office Procedures", Proceedings of
the 27th HICSS (Nunamaker, J. F., Sprague, R. H., Eds.), Vol. IV,
IEEE Computer Society Press, Los Alamitos/CA., 1994, pp. 663-
672

[7] Frank, U., "MEMO: A Tool Supported Methodology for
Analyzing and (Re-) Designing Business Information Systems",
Technology of Object-Oriented Languages and Systems (Ege, R.,
Singh, M., Meyer, B., Eds.), pp. 367-380. Prentice Hall, Engle-

wood Cliffs, 1994

[8] Goldfarb, C., Rubinsky, Y., The SGML Handbook. Claren-
don Press, Oxford, 1990

[9] Isakowitz, T., Stohr, E.A., Balasubramanian, P., "RMM: A
Methodology for Structured Hypermedia Design", Communicati-
ons of the ACM, Vol. 38, No. 8, pp. 34-44, 1995

[10] Jacobson, I. et al., Object-Oriented Software Engineering. A
Use Case Driven Approach. Addison Wesley, Reading/Mass.
1992

[11] Krasner, G.E., Pope, S.T., "A cookbook for using the model
view controller user interface paradigm in Smalltalk-80", Journal
of Object-Oriented Programming. Vol. 1, No. 3, 1988, pp. 26-49

[12] Lochovsky, F., Lee, A., "Document Management Systems",
Tsichritzis, D. (Ed.): Office Automation. Springer, Berlin/Heidel-
berg 1985, pp. 21-40

[13] Reinhardt, A., "Managing the New Document", BYTE, Au-
gust, pp. 91-104, 1994

[14] Raggett, D., The Definitive Guide to HTML 3.0. Electronic
Publishing on the World Wide Web. Addison-Wesley, Reading,
Mass. 1995

[15] Rumbaugh, J. et al., Object-oriented modeling and design.
Prentice Hall, Englewood Cliffs/NJ et al. 1991

[16] Schwabe, D., Ross, G., "The Object-Oriented Hypermedia
Design Model", Communications of the ACM, Vol. 38, No. 8,
1995, pp. 45-48

[17] The OpenDoc Design Team, OpenDoc Technical Summary.
Component Integration Laboratories 1994

[18] Travis, B. and Waldt, D., The SGML Implementation Guide.
A Blueprint for SGML Migration. Berlin, Heidelberg, etc., Sprin-
ger, 1995

[19] Tsichritzis, D.C., Form Management, Communications of
the ACM, Vol.25, No.7, July, pp. 453-478, 1982

