
ULRICH FRANK TOWARDS A STANDARDIZATION OF
OBJECT-ORIENTED MODELLING
LANGUAGES?

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 3

Mai 1997

ULRICH FRANK TOWARDS A STANDARDIZATION OF
OBJECT-ORIENTED MODELLING
LANGUAGES?

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 3

Mai 1997

Die Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik dienen der Darstellung vorläufiger Ergebnisse,
die i.d.R. noch für spätere Veröffentlichungen überar-
beitet werden. Die Autoren sind deshalb für kritische
Hinweise dankbar.

The "Arbeitsberichte des Instituts für Wirtschaftsin-
formatik" comprise preliminary results which will
usually be revised for subsequent publications. Criti-
cal comments would be appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der Über-
setzung, des Nachdruckes, des Vortrags, der Entnah-
me von Abbildungen und Tabellen - auch bei nur
auszugsweiser Verwertung.

All rights reserved. No part of this report may be re-
produced by any means, or translated.

Arbeitsberichte des Instituts für
Wirtschaftsinformatik
Herausgegeben von / Edited by:

Prof. Dr. Ulrich Frank
Prof. Dr. J. Felix Hampe
Prof. Dr. Stefan Klein

Bezugsquelle / Source of Supply:

Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
56075 Koblenz
Tel.: 0261-9119-480
Fax: 0261-9119-487
Email: iwi@uni-koblenz.de
WWW: http://www.uni-koblenz.de/~iwi

Anschrift der Verfasser/
Address of the authors:

Prof. Dr. Ulrich Frank
Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
D-56075 Koblenz

©IWI 1997

4

Abstract

Object-oriented modelling is used in a growing number of commercial software development
projects. However, the plethora of approaches and corresponding CASE tools still prevents
corporate users to migrate to object-oriented software development methods. Against this
background the recent efforts of the Object Management Group (OMG) to standardize object-
oriented modelling languages seem to promise substantial benefits: Not only will a standard
allow to easily port a model from one CASE tool to another, it will also protect investment in
training. In addition, it is a prerequisite for standardized business object models which - in the
long run - may substantially improve the economics of developing and maintaining corporate
information systems. Nevertheless there are objections against a standardization at present
time: It is questionable, whether the state of the art in object-oriented modelling is mature
enough to allow for standardization. Furthermore standardization holds the risk to discourage
further innovations.

In order to analyze the state of the art, this report will first give an overview of previous ap-
proaches to object-oriented modelling. To get an idea of the present state of the art, the essen-
tial characteristics of the modelling languages currently under review at the OMG are briefly
characterized - together with an additional approach that recently has gained remarkable atten-
tion. This will lead to a number of research challenges still to overcome. Finally the report of-
fers a subtly differentiated answer to the question whether or not it is time for standardizing
object-oriented modelling languages.

5

1. Motivation

During the last decade, object-oriented software development has been adopted in the academ-
ic world with remarkable enthusiasm. This is different with corporate software development:
Although there is a tremendous marketing push caused by vendors, consultants, and specialist
journals, many companies are hesitating to introduce object-oriented methods1. This is for
comprehensible reasons: At present time, there are still serious inhibitors of object-oriented
software development to overcome. There is lack of mature technology. While there are ob-
ject-oriented programming languages that come with reliable compilers - sometimes embed-
ded in rather convenient environments, today’s object-oriented database management systems
are usually not suited to replace relational database management systems within corporate in-
formation systems. Furthermore there is lack of competence. In order to exploit the benefits
offered by the object-oriented paradigm, and to avoid its pitfalls, it is necessary for the devel-
opers to gain a deep understanding of the essential concepts. It is certainly not too daring to
assume that most software developers do not have these skills today. From a managerial point
of view it is risky to provide for the training that is required to develop these skills: Not only
that training is expensive, and its success is hard to predict, furthermore there is still lack of
standards. This is the case for object-oriented programming languages and database manage-
ment systems, as well as for specialized development methods. For this reason protection of
investments, both in professional training and in technology (CASE, compilers, etc.), is usual-
ly not satisfactory.

Although many companies are still hesitating to introduce object-oriented methods and tech-
nologies, there is no doubt that the future (that is at least the next ten years) of corporate soft-
ware development will be more and more object-oriented - simply because there is no alterna-
tive paradigm of similar relevance. In other words: The already big market for object-oriented
concepts, training, and technologies can still be expected to grow at a fast pace. However, in
order to encourage corporate investments, it is not sufficient to develop mature technologies.
In addition it is crucial to provide reliable standards that foster interoperability and reusability,
and protect investments at the same time. Only recently it became apparent that the various di-
alects of object-oriented modelling will eventually be replaced by an industry standard mod-
elling language. On the one hand, three of the best known authors of modelling methods de-
cided to merge their efforts into one company in order to consolidate their methods into one
"unified method" ([Rum96b]). On the other hand, the "Object Management Group" (OMG) is-
sued a request for proposals for object analysis and design ([OMG96]). The submissions were
due at January, 17th, 1997. The review process can be expected not to be completed before the
end of 1997. The OMG’s request for proposal was the cause for writing this report which will
focus on the following questions:

• What is/could be subject of standardization in the area of object-oriented modelling?

• What are the prospects and risks that are related to standardization?

• What is the OMG’s intention?

• What are the characteristics of the official proposals to the OMG?

1. To our knowledge there has not been a single representative study on an international scale. A recently
conducted empirical study ([Sch97]) indicates that less than 10% of the german insurance companies
use object-oriented software development methods.

6

• Is the current state of the art mature enough to allow for standardization?

This paper is intended to be followed by a later report ([FrPr97]) which will compare two mod-
elling languages, the UML ([Rat97a] .. [Rat97j]) that has been proposed to the OMG, and the
OML [FiHe96].

2. Object-Oriented Modelling: Need for Standardization?

During the last 10 years a remarkable number of approaches to support object-oriented soft-
ware development on a conceptual level have been published. The majority of them evolved
in an academic setting. Unfortunately, most of them are not documented in a comprehensive
way. Furthermore the differences between some approaches seem to be marginal. For this rea-
son, it would not make much sense to consider all of the approaches we have encountered. In-
stead we will give an overview that is restricted to a few characteristics. With the increasing
popularity of object-oriented software development, object-oriented modelling has gained
more and more commercial attention - resulting in a growing market for specialized services
and tools. Against this background - a new paradigm, attractive both from an academic and a
commercial point of view - it is not surprising that there is remarkable diversity in concepts
and terminology. In order to discuss the benefits and risks of standardization we will define
essential subjects of object-oriented modelling - such as method, model, metamodel, etc.

2.1 Overview of Previous Object-Oriented Modelling Methods
Object-oriented software development in general, object-oriented modelling in particular has
been a rather popular topic both for conferences and specialized journals. This may indicate a
vivid period of research - or simply the usual hyper-activity caused by the emergence of a new
research paradigm (or at least what seems to be a new paradigm). To give an impression of the
amount of research, we have gathered more than 40 approaches which focus on various aspects
of object-oriented analysis and design. The following list is compiled from a previous survey
([Fra93]) and additional sources ([Big97], [Obj97]). It is not meant to be complete. Missing
information about the name of an approach or about its tool support means that there was no
information available. It does not necessarily imply that a name or tool does not exist.

Author/Institution Name Refs Type of
Pub.

Tool
Support

Ackroyd/Daum [AcDa91] A

Alabisco [Ala88] C

Berard [Ber93] T

Bailin [Bai89] A

Booch [Boo94] T Y

Buhr [Bu84] T

Cherry PAMELA 2 [Che87] R

Coad/Yourdon OOA/OOD [CoYo91],
[CoYo90]

T
T

Y

Coleman Fusion [Col94] T Y

7

Author/Institution Name Refs Type of
Pub.

Tool
Support

Cunningham/Beck [CuBe86] C

Desfray Object Engi-
neering

[Des94] T

Edwards Ptech [Edw89] T Y

Embley et al. [EmKu92] T

ESA HOOD [ESA89] M

Felsinger [Fel87] R

Ferstl/Sinz SOM [FeSi91],
[FeSi90]

A
A

Y

Firesmith [Fir92] T

Goldberg/Rubin OBA [GoRu92] A Y

Graham [Gra91] T

Halladay/Wiebel [HaWi93] T

Henderson-Sellers/Edwards [HeEd94],
[Hen92]

T
T

IBM [IBM90] R

Jacobson et al. OOSE [JaCh92] T Y

Johnson/Foote [JoFo85] A

Kadie [Kad86] R

Kappel/Schrefl [KaSc91] A

Lee/Carver [LeCa91] A

Liskov/Guttag [LiGu86] T

Martin/Odell [MaOd92],
[MaOd95]

T
T

Masiero/Germano [MaGe88] A

McGregor/Sykes [McSy92] T

Meyer [Mey88] T

Mullin [Mul89] T

Nielsen [Nie88] R

Odell [Ode92] A

Page et al. [PaBe89] C

Rajlich/Silva [RaSi87] R

Robinson [Rob92] T

8

2.2 Terminology
One of the shady sides of object-oriented software technology is the lack of a common, and
consistent terminology. This fact may be contributed to various reasons:

• The specialized research is still in a rather early stage.

• There are many players - with different backgrounds and motives - who influence the evolv-
ing terminology: software-engineers, computer scientists, consultants, tool vendors, etc.

• There is an "inherent" ambiguity that results from the different levels of abstraction that are
characteristic for the various phases of software development - resulting in subtle termino-
logical traps that everybody in the field knows: Sometimes somebody, who is talking about
an "object", actually means a "class", within another context he may think of a particular
instance ...

The definition of a sound terminology is certainly one of the key contributions to be expected
from a modelling approach. For this - and for some other reasons - we do not have to discuss
the whole range of terminological problems at this point. However, we do need a number of
terms to categorize the approaches to be evaluated: method, methodology, model, metamodel,
modelling language, etc.. Since they are essential terms not only of computer science but of
science and philosophy in general, we do not intend to provide a comprehensive definition. In-
stead, we will briefly describe the interpretations we favour within the context of this working
paper.

A method in general is a systematic approach that helps with solving a class of problems. The

Author/Institution Name Refs Type of
Pub.

Tool
Support

Rumbaugh et al. OMT [Rum91] T Y

Seidewitz/Stark [SeSt87] A

Shlaer/Mellor [ShMe92],
[ShMe88]

T
T

Y

Velho/Carapuca SOM [VeCa92] C

Walden/Nerson BON [WaNe95] T Y

Wasserman et al. [WaPi90] A

Wirfs-Brock/Wilkerson [WiWi90] T

T Textbook
A Article in a Journal or Reader
M Manual
R Research Report
C Conference Paper

Fig. 1: Overview of past approaches to object-oriented modelling

9

term "systematic" is to express that usually a class of problems is divided into classes of sub-
problems, together with techniques, or methods to solve them ([Lor84]). Furthermore a meth-
od includes a more or less rigid temporal order of the various problem solving activities togeth-
er with the required skills and resources. In general, it is a key characteristic of scientific work
to apply, to review and to revise methods. A software development method is a method that is
supposed to support the systematic development of a class of software.

The term methodology in contrast denotes a study or a theory of methods in the sense that it
includes a set of methods together with guidelines or principles to evaluate, select, apply, and
develop them ([Mit84]). Many authors use "methodology" to denote a method. The methodol-
ogy that is focusing on scientific methods in general, or within a particular discipline, is also
called epistemology, or theory of science.

A model in general is a description of an existing or potential domain, where domain denotes
either a part of the "real", perceivable world, an intellectual construction, or a mixture of both.
It is essential for this description that it is an abstraction of the related domain. Certain aspects
of the domain are not taken into account on purpose. For this reason a model allows to concen-
trate on relevant aspects, thereby helping to simplify the analysis of a complex matter. Rele-
vance depends on the particular purpose a model is to serve - such as analysis, description, ex-
planation, understanding, design. In the context of software development we call a model con-
ceptual if it is focusing on relevant concepts of the application domain, neglecting implemen-
tation-related issues. A concept is a notion, an idea that allows to identify and describe classes
or categories of real world entities by defining their essential features. According to Mylopou-
los and Levesque ([MyLe84], p. 11), a conceptual model should provide "... descriptions of a
world enterprise/slice of reality which correspond directly and naturally to our own conceptu-
alizations of the object of these descriptions.” Notice that this does not exclude models of tech-
nical systems, such as machines, processors, etc. Hence, a concept is an abstraction of a set of
particular occurrences. In other words: Whether or not a model is regarded as being conceptual
will also depend on the intention of its creators - and the perception of the observers. Usually,
but not necessarily, a conceptual model includes a graphical representation.

A description requires the existence of a language. While in principle any language, in partic-
ular a natural language, can be used to describe a model, there are languages that were espe-
cially introduced for the purpose of describing models. We call these languages modelling lan-
guages. A language may be formalized or not. There may be various representations - such as
text or graphics - to express propositions of a language. Modelling languages that are used for
software development usually come with a graphical notation. Languages of that kind should
be suited to fulfil the requirements of conceptual modelling (focus on "natural" concepts). At
the same time they should allow for a straightforward transformation to a programming lan-
guage. Object-Oriented modelling is an attempt to provide modelling languages which fulfil
these divergent requirements.

A metalanguage is a language that serves to speak about a language, like its symbols, syntax
and semantics. One inherent source of ambiguity in natural languages is the lack of a rigid sep-
aration of meta- and object language. In order to avoid ambiguity, formal languages require a
clear separation of meta- and object level. That does not mean, however, that a formal language
and its corresponding metalanguage need to be different in terms of their symbols or their syn-
tax. Defining a language with a formal metalanguage promises a number of benefits. A meta-
language that is used to specify a number of object-level languages helps to integrate these lan-

10

guages: Information represented in the various object-level languages can be exchanged by re-
ferring to concepts defined in the common metalanguage - as long as the involved languages
have those concepts in common. Furthermore a metalanguage can help with reusability and
flexibility: Software that operates on a particular metalanguage, can be used to generate soft-
ware that operates on the object-level language (like a compiler compiler, or Meta CASE, see
for instance [EbSü96]). A metalanguage may be described by yet another metalanguage which
is sometimes called meta metalanguage, and so forth. A meta metalanguage provides the same
advantages for handling metalanguages as a metalanguage does for object-level languages.

A metamodel is a model representing a metalanguage of a class of modelling languages. It
serves to describe the symbols, syntax, and semantics of these modelling languages in a more
or less rigid way. Depending on the metalanguage it is based on a metamodel may be formal
or not. A metamodel may also include instructions or recommendations of how to render a
model for the viewer, in other words: the notation of the modelling language. A metamodel
may be rendered in the same notation as its subordinated models. The benefits provided by
metamodels or meta metamodels correspond to those of metalanguages and meta metalan-
guages respectively.

A modelling method is a method that supports the construction and use of a class of models. It
will usually include some sort of metamodel or metalanguage that, however, does not have to
be formalized. Furthermore it may include some of the following aspects (this list is not meant
to be complete):

• more or less detailed decomposition into subproblems together with problem solving activ-
ities

• temporal/causal order of problem solving activities

• profiles of roles required to perform those activities

• information required, together with heuristics to gather it

• documents/models to be produced

• criteria or even metrics to evaluate models

• further support for project management

• examples of how to apply the method

• generic models for certain domains that can be reused and modified

A modelling methodology is a study or a theory about modelling methods within a certain area.
Its subject is a set of modelling methods together with criteria/principles to use, analyze, and
revise them. Computer science in general could be regarded as a modelling methodology, since
one of its essential research goals is to provide appropriate abstractions for a class of problems
- together with solutions to these problems.

Fig. 2 shows a semantic net that illustrates the terminology. It is not intended to provide a com-
plete and precise definition.

11

2.3 Subjects, Benefits, and Pitfalls of Standardization
While conventions and standards have played an important role in information technology for
long, standards have gained a still increasing attention in the nineties. It is remarkable that to-
day’s information managers are not only interested in suitable standards. Instead they are con-

Fig. 2: Concepts within object-oriented modelling

Method

Methodology

Notation

Language

Model

Metalanguage

Metamodel

Modelling
Language

Problem

Heuristics

Modelling
Methodology

Modelling
Method

Domain

Natural
Language

Level of
Formalization

Technique

Process

is a Artificial
Language

is a

characterized by

requires

serves to
express

serves to
describe

is a

describes/defines

serves as

serves to
express

represents

includes

+

+

+

+

+

includes

+

includes

is a

includes

includes

includes

should help
with solving

+

is subject of

+

+

is subject of

is a

+

+

+ more than one possible

serves as

12

centrating more than ever on the question which attempt will finally make it as the one and
only global standard for a certain area - thereby almost paralyzing their ability to make deci-
sions. We believe that this is both for economic and psychological reasons. The emergence of
microcomputers and so called industry standards (which are sometimes in fact proprietary
specifications) have demonstrated the tremendous impact of scale economies on the produc-
tion costs per unit of hardware, and especially of software. This experience seems to have fos-
tered a wide spread believe that in the end only one standard within a particular scope will sur-
vive. Not only vendors, but also (organizational) buyers are obviously impressed (not to say
"obsessed") with this "the winner takes it all" mentality. From an economic point of view it
makes a big difference, whether a "standard" results from a dominating proprietary technolo-
gy, or whether it is "open" in the sense that its specification may - in principle - be accessed,
and used by everybody. The specification of open standards has been the business of national
or international standardization bodies for long. There have also been standardization initia-
tives which were organized by the industry itself, mainly for two reasons: to speed up the
standardization process and to gain better control over it. Before we will have a look at one
particular initiative that is of outstanding importance within the area of object-oriented tech-
nologies, namely the OMG, we will first analyze what could be subject of standardization in
the area of object-oriented modelling.

Standardizing a (Modelling) Methodology

A methodology in the sense of how we introduced the term is by no means a subject suitable
for standardization. It is common sense that a theory should be permanently evaluated against
the domain it has been introduced for - and revised if necessary. This epistemological process
would be compromised by "standard theories". Standardizing a study would be equally bizarre.
There is, however, no doubt that a common terminology is rather important for the evolution
of methodologies as well.

Standardizing a (Modelling) Method

Similar to methodology it is not obvious, why it would make sense to standardize "a systematic
approach that helps with solving a class of problems". Instead it seems to be more appropriate
that anybody, who has to solve a problem, may try the available methods and finally take the
one that suits him best. From an academic point of view such a standardization seems to be
bizarre: Scientific progress relies heavily on permanent reviews and - eventually - modifica-
tions of existing methods. Freezing a method by standardizing it would contradict this process.
However, while this is certainly true from an epistemological point of view, things tend to be
more subtle in practice. For one, we have to take into account that defining and prescribing sta-
ble methods - with more or less rigour - is an essential prerequisite of professional collabora-
tive work ([Wei79], pp. 15). Organizing allows for task specific training, and is a prerequisite
for core management functions such as planning and control. Does that mean, however, that
there is need to standardize business processes? There is certainly a clear objection against
standardizing the organisation of processes: Organizing its business should be part of the core
competencies of almost any company, and therefore it is an essential part of its competitive-
ness. On the other hand we currently witness a tendency toward standard business processes,
promoted by technologies such as integrated business software, or workflow management sys-
tems. Reorganising business processes by applying certain standard patterns facilitates the ef-
ficient introduction of corresponding software. The question of the appropriate level of stand-
ardization within business processes is a complex matter that we cannot analyze here in depth.

13

There is, however, another motivation for standardizing methods: Defining steps and guide-
lines for documenting their results may help with reconstructing a business process. Thereby
customers may get an idea of the efficiency of a process and how the process contributes to the
overall quality of a product or service. For the companies that apply the method it may help
with increasing the awareness of organizational efficiency and thereby fostering more efficient
processes. Recent examples of efforts to standardize methods or processes are ISO 9000
([KeJa96], [Sch94]) and the "V-Modell" (a process model for software development, defined
by the German forces "Bundeswehr" [BrDr93]). Notice that standard methods such as ISO
9000 or the "V-Modell" define a temporal order of documents and their corresponding (mod-
elling) languages (which may be structured forms of the natural language) rather than provid-
ing a precise definition of the involved tasks and how to perform them.

We can summarize that standardizing a software development method in every detail is cer-
tainly no option. A method’s potential depends on the problem it is used for, the skills and at-
titude of the method users, the available resources, etc. For this reason it is hard to imagine that
there could be one best (object-oriented modelling) method at a point in time. Furthermore you
have to take into account that methods will (and should) evolve over time. At last it would cer-
tainly be too expensive to enforce a detailed standard method, since that would cause expenses
for monitoring which nobody could afford. Therefore it is definitely no good idea to standard-
ize a method. However, in order to foster comparability, quality, and professional training, it
can make sense to standardize the documents (models) that should be produced within a meth-
od - which in turn will certainly have an impact on the methods that use these documents.

Standardizing a (Modelling) Language

The notion of a language implies the idea of conventions which may be more or less rigid. Oth-
erwise a language could not be used for the purpose of communication. Standardizing a lan-
guage implies its formalization which in turn requires a formal metalanguage. It is evident that
the metalanguage itself has to be precisely defined, too. In order to avoid a regressum ad in-
finitum there has to be at one point a reference to already existing well defined languages and
concepts - like a logical calculus or standardized types/classes.

What are the benefits of standardizing modelling languages used within the process of soft-
ware development? The potential benefits are obvious: Standardized modelling languages will
allow for better protection of investments in technologies that depend on those languages. This
is also the case for investments into training. Standardized modelling language will also im-
prove the chance for exchanging models and interoperability in general, or - in other words -
for system integration. Furthermore standardized modelling languages will foster reusability
of existing models, for instance of generic or reference models developed for certain problem
areas or domains. A modelling language will usually include a graphical notation which, how-
ever, does not have to be part of a standard: From a logical point of view the notation is irrel-
evant, since it does not contain any formal semantics. Nevertheless a common notation will
facilitate the communication between all people using the modelling language. Therefore it
might be reasonable to enhance a standard with recommendations for a notation.

Despite its potential benefits, standardizing modelling languages faces a severe challenge:
What are the requirements a modelling language should fulfil in order to be useful within a
longer time frame? We will analyze this question later (see 4.3, [FrPr97]). One thing, however,
is for sure: There is no easy answer to it. This leads to another question we will also look at
later in this report: Is it already the time to standardize object-oriented modelling languages?

14

Standardizing (Object) Models

During the last years an attractive vision has gained remarkable popularity: the emergence of
a market for standardized (implemented) classes for corporate information systems, often re-
ferred to as "business objects". It is not possible to establish a market for business classes/ob-
jects that have been specified/implemented independent from each other: Usually objects,
which are to be used in a certain domain, will interact with other objects/classes. Furthermore
it is important to represent business objects in an illustrative way. For these reasons the vision
of providing standardized business objects in the long run requires application level object
models together with a corresponding implementation - either as a class library or as a frame-
work (see [LeRo95]). Standardizing application level object models certainly implies the ex-
istence of a standardized modelling language. While standardized domain level object models
offer fascinating prospects on reusability and highly integrated systems, the corresponding
standardization process requires complex decisions to be made: about the scope of a model,
about its level of abstraction and semantics, about the modelling languages to be used, etc.

3. The Current Situation: Between Demand Pull and Technology Push

Our overview of approaches to object-oriented modelling (see 2.1) gives an idea of the exten-
sive research activities in this field. However, there has been a concentration on a small
number of approaches. Some textbooks achieved an impressive circulation. Although we do
not know of any sufficient empirical evidence, it seems that four methods by far received the
most attention: OMT ([Rum91]), Booch ([Boo94]), OOSE ([JaCh92]), Coad/Yourdan
([CoYo91], [CoYo90]). All of these methods, as well as related services and tools, were mar-
keted in companies the authors were affiliated with. From an economic point of view it is re-
markable that even this small number of competing approaches turned out to be too big for the
market: Many corporate users hesitated to introduce one of the methods as long as it was not
clear which one would survive in the long run. In this situation, Rational Software, the com-
pany behind Booch, began an initiative to form a strategic alliance with some of the key play-
ers. First Rumbaugh became a partner. About a year later, in 1995, Jacobson’s company, Ob-
jectory, joined Rational as well ([Rat97c]). Soon Rational announced to develop a "unified
method", promising to make it a compilation of the best features offered by the original meth-
ods ([Rum96b]).

3.1 Background of Current Standardization Efforts
Back in 1992 the OMG had addressed a similar objective by founding an "Object Analysis and
Design Special Interest Group" [KaCh92]. The OMG itself was founded in 1989 by vendors
and IT users. It is committed to define reference specifications for object-oriented technolo-
gies. At present time the OMG has more than 700 members (http://www.omg.com). The ac-
tivities of the OMG used to be focused mainly on specifying an architecture for distributed ob-
ject systems, called "Object Management Architecture" (OMA), together with its components,
such as the "Common Object Request Broker Architecture" (CORBA, [Ben93]) and a low lev-
el common object model. However, in order to foster the development of software that is OMA
compliant, conceptual support is required as well. To provide for appropriate support, the
OMG launched the "Object Analysis and Design Special Interest Group" mentioned above.
But this group did not succeed to meet its central objective: "To formalise the definitions of
the concepts used for analysis and design" ([KaCh92], p. 12). Apparently for this failure, the
OMG issued a request for proposals for object analysis and design last year ([OMG96a], see
3.2).

15

While the OMG’s primary focus is on CASE tool interoperability (see below), there is another
reason for the OMG to standardize object-oriented modelling languages. It is related to the es-
sential vision of the OMG: transparently communicating objects - distributed all over the
world - no matter which platform they reside on, no matter which programming language they
are implemented in. The OMA and its components specify an architecture of a system level
infrastructure on top of distributed, heterogeneous environments. While this is certainly a pre-
requisite for distributed object systems (as operating systems are a prerequisite for local appli-
cations), it is not sufficient to allow for transparent communication on the application level.
For instance: If you create an object representing an order, you cannot transmit it to another
company that does not know the corresponding class.

Domain specific classes, however, are beyond the scope of the object model specified by the
OMG ([OMG97]). Instead it is restricted to base level classes - similar to the types/classes usu-
ally provided with programming languages. Nevertheless the OMG is stressing the importance
of domain level classes, namely business objects (see [OMG96b]). It defines business objects
as "... representations of the nature and behavior of real world things or concepts in terms that
are meaningful to the business. Customers, products, orders, employees, trades, financial in-
struments, shipping containers and vehicles are all examples of real-world concepts or things
that could be represented as business objects. Business objects add value over other represen-
tations by providing a way of managing complexity, giving a higher level perspective, and
packaging the essential characteristics of business concepts more completely. We can think of
business objects as actors, role-players, or surrogates for the real world things or concepts that
they represent." ([OMG95a], p. 5). In order to prepare the grounds for standardized business
objects the OMG founded a "Business Object Management Special Interest Group" (BOM-
SIG). For this group the need for application level object models seems to be evident: "The
business object model becomes the driving force of the information system, not the technolo-
gy. The business object model is derived directly from the shape of the enterprise."
([OMG96b], p. 5) The OMG requires submitters to "... address the relationship between the
meta-model constructs that represent OA&D objects and the metadata specifications of the
Business Object Facility (BOF) which represent the business semantics of ... Business Ob-
jects." ([OMG96a], p. 15)

3.2 OMG’s Request for Proposals: Subject and Ambiguities
Among the vendors of object-oriented modelling methods and tools Rational Software has
gained an outstanding position. The strongest competition in the field seemed to be between
the Booch method, OMT, and OOSE. Now that those competitors merged into one company,
there is hardly any competitor left. Furthermore Rational has formed an alliance with Micro-
soft: While Rational has aquired a number of Microsoft’s development and testing tools, Mi-
crosoft in turn will include Rational’s modelling tools into future versions of its development
environments (http://www.rational.com, [You97]). Taking all of those aspects together it is not
surprising that analysts predict that the unified method announced by Rational will be the fu-
ture industry standard: "... I think the battle for dominance of the object-oriented visual mod-
eling marketplace is over: Rational wins." ([You97], p. 16). However, with the OMG’s request
for proposals ([OMG96a]) this situation has changed a little. Since Rational is a member of the
OMG, and submitted a proposal as well, it should be committed to accept the standard finally
proposed by the OMG. Therefore other submissions should have a chance to influence the fu-
ture standard, too - although we do not believe that the OMG will ignore Rational’s position
at the marketplace.

16

The OMG’s request for proposals, "Object Analysis&Design RFP-1" ([OMG96a]) was issued
at June 6th, 1996. The initial submissions were due at January 17th, 1997. During the evalua-
tion process, the submitters will get the chance to revise their proposals. These revised submis-
sions were due at April 15th, 1997. Within the OMG’s overall plan, object-oriented modelling
is part of the OMA’s so called "Common Facilities" ([OMG95b]). It is remarkable that - dif-
ferent from Rational’s original approach - the OMG has never intended to standardize a meth-
od. Instead its primary focus is on the standardization of modelling languages. Therefore the
submissions were to specify "the interfaces and semantics needed to support the creation and
manipulation of a core set of OA&D models that define the structure, meaning, and behaviour
of object applications within the OMG Object Management Architecture. These models may
be

• static models (also known as structural models, e.g., class models, type models, instance
models)

• dynamic models (also known as behavioural models, e.g., state-transition models, object in-
teraction models, object dataflow models)

• usage models (e.g., use-case models)

• architectural models (also known as system composition models, e.g., subsystem models,
modules-component models, process maps)

or other models of value during analysis and design." ([OMG96a], p. 3)

As already mentioned above, the OMG is primarily interested in CASE tool interoperability:

"Users of a conforming tool will have confidence that they can import/export models from/to
other conforming tools. Use of a common OA&D facility will help ensure that the content of
an OA&D model can be combined with or imported into another OA&D model where it makes
semantic sense, thereby improving consistency and traceability across the various OA&D mod-
els describing a system. Each of these models focuses on a particular facet of the system; to-
gether they describe the multiple facets of the system. The ability to integrate OA&D tools from
multiple vendors should give users assurance that they can tailor their OA&D environments to
meet their needs that their investments in OA&D tools can be well leveraged as their develop-
ment environments grow and evolve, and that they can exercise freedom of choice in selection
and deployment of OA&D tools." ([OMG96a], pp. 3)

Note, however, that the OMG is also thinking of models as a medium to foster communication
between people: "While the primary focus of this RFP is OA&D tool interoperability, the
OA&D facility also includes a set of notations that provide the foundation for enabling a core
set of OA&D diagrams, each of which describes a model, to be communicated between people
without semantic loss." ([OMG96a], p. 4) The OMG’s statements about the purpose of the
"OA&D facility" leave a number of questions:

What is the precise objective of the intended standard?

The explicit reference to tool interoperability indicates that the standard is to describe meta-
models for those models managed by CASE tools. On the other hand the OMG stresses the
conceptual level as well: "An object analysis and design model (hereafter called simply model)
is defined as an object that represents the semantics of an analysis or design of a system. A
model is used to define and specify the semantics of interest in a particular aspect of the do-
main." ([OMG96a], p. 13) Note that both types of specifications are usually different. While a

17

model that is managed by a tool should be suited to incorporate the semantics defined in the
corresponding modelling languages, it will also include additional information, like for ver-
sioning, user management, etc.

What is the scope of the (meta) models to be specified?

While the request for proposals provides examples for a number of models that might be part
of the standard ("class models", "instance models", "state-transition models", "use-case mod-
els", etc.), it does not tell the level of semantics they should incorporate. In other words: What
are the stages of the software lifecycle to be covered (in part, or complete) by the modelling
languages to be defined? There is evidence that the OMG does not plan a rigid standard any-
way:

"The OA&D facility should not constrain the processes and techniques that OA&D methods
use to extract the information needed to determine the semantic content of OA&D models, to
ensure the integrity and validity of the content of those models, or to evolve or optimize those
models. Nor should the facility constrain OA&D methods from introducing models in addition
to the core set." ([OMG96a], p. 4)

How does the intended standard relate to other standards?

There is no doubt that the standard should be compliant to existing OMG specifications (such
as Interface Definition Language (IDL) - which, according to OMG, may imply an extension
of the current IDL specification). However, there are at least two standardization efforts out-
side the OMG which are concerned with subjects that are obviously related to analysis and de-
sign.

Firstly, there is the CASE Date Interchange Format (CDIF), defined by the CDIF division
within the Electronic Industries Association (EIA). CDIF is dedicated to support the exchange
of models managed by CASE tools. CDIF does not specify the metamodel a tool has to use
itself. Instead it is restricted to the external representations that a tool has to support with its
interfaces. The following example illustrates that CDIF’s emphasis is clearly on the informa-
tion typically required by tools, not on the conceptual level ([Ern96]):
 (Attribute ATT01
 (Name "Current Balance")
 (CreationDate "951102")
 (CreationTime "08:00:01.1234")
)

With the ISO "Information Resource Dictionary System" (IRDS, [ISO90]) and the "Portable
Common Tool Environment" (PCTE, [Wak93]), an initiative launched by tool vendors, two
major standardization efforts are committed to using the CDIF metamodel ([CDI96]).

Secondly, there are the activities of the Workflow Management Coalition (WfMC). Similar to
the OMG the WfMC is an industry consortium. It aims a a set of standards that are to allow for
"open" workflow management systems. In order to achieve this goal the WfMC intends to de-
fine a set of interfaces for the components to be integrated (such as office application, DBMS,
and so called workflow engines) as well as a "Workflow Process Definition Language" (WP-
DL, [WFM96]). The idea behind this approach is similar to entity relationship modelling and
SQL respectively: A workflow type can be modelled using an appropriate modelling language
provided by a corresponding tool. The modelling language will then translate into the WPDL

18

which can be interpreted by any workflow engine that has been certified by the WfMC (see
fig. 3)

There is a clear relationship to the mission of the OMG’s "Object Analysis&Design Facility":
In order to model a workflow, you need to describe the information required and produced
within that workflow - for instance by referring to an object model. While both, the EIA
([CDI96]) and the WfMC ([And96], p. 21) refer to the OMG, to our knowledge the OMG itself
does not explain its relationship to those approaches, nor does it even mention them.

4. Object-Oriented Modelling Languages: Is there a State of the Art?

Standardizing technologies or concepts requires a mature level of corresponding research ac-
tivities. With object-oriented modelling, it is impossible to identify a unique scientific commu-
nity that is dedicated to this subject. This is for a number of reasons. Firstly, object-oriented
concepts have various roots, including programming languages, database design, and artificial
intelligence. Secondly, there are contributions from authors with either a commercial or a more
academic background. Therefore we will first focus on what you could call the "dominating"
state of the art: recently published approaches which are either well known and/or promoted
by powerful commercial consortia. For this purpose we will have a look at the languages sub-
mitted to the OMG early this year. While it is arguable that all of them are important enough
to be part of the dominating state of the art, they have at least a potential impact on the standard,
the OMG is going to specify. Our brief analysis is mainly motivated by the following question:
Do the proposals give the impression of a convergent (and mature) field, or are the various ap-

Workflow Engine

Workflow Process
Definition Lan-
guage (WPDL)

Vendor Specific Inter-
nal Representation

DECLARE WORKFLOW
PROCESS < CREDIT
READ APPLICATION
IF FIELDS = ALL
CALL EXTRACT
OTHERWISE ...

END;

WPDL-Inter-
change Format

Import/Export Layer

Process Type
Definitions

Fig. 3: Process Modelling and Specification within the WfMC Approach ([WfM96], p. 5)

19

proaches so different in nature that one can hardly speak of a coherent state of the art.

Since work on object-oriented modelling is certainly not restricted to the official proposals to
the OMG, we will also have a look at alternative approaches, and discuss open research ques-
tions as well.

4.1 The Proposals to the OMG

Until the deadline at January 17th the following six proposals had been submitted to the OMG:

Taskon; Reich Technologies; Humans and Technology

This submission does not claim to describe a complete set of object-oriented modelling lan-
guages. Instead its authors intend to provide an "extension of the UML, and the OML object
models" ([Tas97], p. 1). It originates from a number of previous approaches (like [Ree95],
[WiWi90]). Its main emphasis is on three additional basic concepts: role model, role, and port.
Roles emphasize another level of abstraction than classes. A role represents a particular real
world object’s role within a certain activity. A role model describes the interactions of roles
within an activity. Those interactions are invocations of operations in other roles/objects. Ap-
parently role models are to be used mainly during analysis, in order to record systematically
the features of classes within a corresponding object model: "Knowing all the roles that are to
be played by an object, the interfaces of its class can be created as the union of all the relevant
role model interaction interfaces." ([Tas97], p. 15) A port is described as "an abstraction on a
variable, permitting the object represented by the adjoining role to execute operations in the
object represented by OtherRole." ([Tas97], p. 50) This concept is not sufficiently explained.
We assume that it is similar to - although not equivalent - to delegation, where an object may
transparently access operations of its role object ([FrHa97]).

Figure 4 gives an impression of the core elements of the metamodel proposed by this consor-
tium. The only comment of the authors is that it renders "a rough overview of the dependen-
cies" (of model elements). Without offering directed arcs, the diagram is hard to understand.
This lack of precision and formalization is characteristic for the whole submission. The meta-
model itself is defined using the IDL standardized by the OMG. Although this has been en-
couraged by the OMG, there is no doubt that IDL is not suited to serve as a modelling or spec-
ification language, since it lacks relevant concepts (for instance: it is not possible to express
cardinalities or more specific constraints).

Company/Consortium References Extent (pages)

Taskon; Reich Technologies; Humans and
Technology

[Tas97] 101

IBM; ObjecTime Limited [IBM97] 196

Softeam [Sof97] 37

Platinum Technology [Pla97] 318

Ptech [CeIb97] 58

Rational Software; Microsoft; Hewlett-
Packard; Oracle; Texas Instruments; MCI
Systemhouse; Unisys; ICON Computing;
IntelliCorp.

[Rat97a] ... [Rat97j] >550

20

There is one other suggestion within this proposal that we would like to mention: "system in-
heritance" is to provide for specializing from "the overall system structure and behavior prop-
erties" ([Tas97], p. 14). As the authors state, such a concept would certainly be helpful for de-
signing reusable frameworks. That, however, would require a precise definition of this type of
inheritance - especially how to modify and enhance an inherited system. We could not find
such a definition within the proposal.

Although Reich claims to be a tool vendor, it seems that this consortium is focusing on the ap-
plications of modelling languages rather than on metamodels which would promote tool inter-
operability. The authors have rather elaborated ideas about the particular models to be used
within a software development project. They suggest not less than nine partial views together
with corresponding modelling notations. The models are described in an informal way
([Tas97], pp. 88):
"1.Area of Concern view, which is a textual description of the phenomenon modeled by the

role model. (The Area Of Concern is recorded as the explanation in the RoleModel ele-
ment).

2. Stimulus-Response view. A tabular view showing the system's environment objects (ac-

Interface
Name

Model

Class Model
Name

Implementation
Program source code

Interface
IDL-definition

Class Interfaces
Names

Class Relations
xxx

Scenarios
Name
Roles

Msg. Interaction

Finite State
Diagrams

States
Events
Actions

Role Model
Model Name

Area of Concern

Roles
Responsibilities

Ports (msg. paths)

Port Interfaces
Interface Names
Message names?

Use Cases
Goals
Actors

Fig. 4: "Dependency Hierarchy" of model elements ([Tas97], p. 17)

21

tors), the trigger messages that start system activities, and messages conveying results to
the environment roles.

3. Role List view, a text view showing a list of all roles with their explanations and attributes.
(We do not use a tabular form, because we want to encourage comprehensive explana-
tions).

4. Interface view, a formal text view showing interface definitions in the user's preferred lan-
guage. IDL is taken as default.

5. Collaboration view, a graphical view showing the pattern of roles and the message paths
between them.

6. Scenario view, a graphical view showing example time sequences of messages flowing be-
tween the roles.

7. State Diagram view. A graphical view. There may be one state diagram for each role. It
describes the possible states of the role, the signals that are acceptable in each state, the
action taken as a result of each signal, and the next state attained after the action is com-
pleted. The only kind of signal possible in our model is the receipt of a message.

8. Synthesis view. A graphical view showing the system inheritance relations between role
models.

9. Synthesis table. A tabular view showing the mapping of base model roles to derived model
roles. Mapping of the corresponding ports is implicit, all base model ports and interfaces
being mapped onto the derived model"

All in all, we have the impression that the extensions suggested in this submission may be help-
ful, however, they do not describe essentially new features. Furthermore these extensions are
not defined in a precise way. When it comes to the application of modelling languages, this
submission is rather interesting, since it includes substantial ideas of how to model a domain/
system from various perspectives.

IBM; ObjecTime Limited

This proposal, submitted by IBM and ObjecTime covers what may be called the "full range"
of common object-oriented modelling: static properties, behaviour, and dynamics. Neverthe-
less the authors apparently do not only intend to define a complete set of languages for object-
oriented modelling. While they completely abstract from modelling notations, they put strong
emphasis on language semantics and pragmatics. It is characteristic for this outstanding sub-
mission that it first describes the requirements related to modelling languages in general. The
authors start from the assumption that models may serve a wide range of purposes, which can
hardly be determined in advance. To illustrate this point, they distinguish between "general
purpose modelling languages", "domain specific modelling languages", and even "application
specific modelling languages" (see fig. 5). Furthermore they state that modelling languages
should take into account concepts which are appropriate for a particular purpose (and particu-
lar people) rather than reconstructing programming languages. On the other hand they argue
that modelling applied to software development at some point requires formal definitions of
the modelling languages. From these assumptions they conclude that there is "need for exten-
sibility", "for language and method independence", and "for formality and interoperability"
([IBM97], pp. 12).

The consortium presents a "Core Meta-Model (CMM)" which is the foundation for the models
that can be built within this approach. The CMM contains generic concepts which allow to ex-
press static, dynamic, and interaction semantics. It is characteristic for the level of abstraction

22

suggested by this proposal that the CMM does not explicitly contain core concepts of object-
oriented modelling such as classes or objects. Instead the CMM provides abstractions which
may be specialized further. One of the core abstractions is called "specification" (see fig. 5).
Specification is an abstraction of concepts like type and class: "Specifications representing
pure interfaces will have all Features unimplemented, those representing concrete classes will
have all Features implemented, and further possibilities exist in between." ([IBM97], p. 37)

To allow for domain, or application specific modelling languages, they suggest "model
schemes" which are to foster "modeling languages as formal extensions to the Core Meta-
Model" ([IBM97], p. 11). Compared to other submissions, there is a stronger emphasis on for-
malization. For this purpose the authors introduce and define a formal language called "Object
Constraint Language" (OCL) that is used to specify the CMM. Furthermore it helps with the
specification of additional modelling languages, since the OCL in general is used to specify
invariants within model schemes. Additionally, each "model scheme may define a Grammar
for each type of Expression" ([IBM97], p. 72) - like invariants or conditions. The proposal in-
cludes a few examples of how to specify a model scheme. Smalltalk "design models", for in-
stance, can be introduced by a scheme which includes - among other things - invariants to con-
strain generalization to single inheritance, or to express that every element within a class has
exactly one name ([IBM97], p. 117):
SmalltalkClass
applies to Specification
invariant

•
self.elementNames.collect(namedElement).forAll(el |
el.names.select(nameSpace=self).size = 1);
-- every element has just one name in self’s namespace

•

self.refinees.size <= 1;
 -- single inheritance

23

The ability to introduce specialized languages which are defined by concepts in more general
languages is a promising approach - last but not least to support the idea of standardized busi-
ness object models (which correspond to the "domain specific modelling languages" in fig. 6).
Notice, however, that extensibility - like the definition of new modelling languages with exist-
ing meta concepts - is not sufficient to allow for a straightforward interchange of models ex-
pressed in such a new language: Standardized meta concepts do not imply that the special con-
cepts of a particular modelling language will be standardized, too. For instance: If you define
a language scheme for a business modelling language, you may want to introduce a concept
like "Organisational Unit". It is probably very hard to define such a concept in a way that eve-
rybody is willing to accept. Nevertheless a standardized metalanguage allows to determine
precisely how a specialized concept was defined - even if you do not agree with it.

Fig. 5: Concepts within the Metamodel ([IBM97], p. 23)

24

Although the authors point to the fact that modelling languages should suit a particular pur-
pose, providing particular modelling languages is not their main concern. Instead they refer to
approaches such as the UML or the OML ([IBM97], pp. 131) which they consider as possible
applications of their specification. From our point of view, this is a very ambitious, yet sub-
stantial approach. To briefly summarize our impression, we think that the strength of this ap-
proach marks a possible weakness at the same time. Taking into account the realistic assump-
tions on requirements for modelling languages, it is certainly a good idea to provide for a high
degree of extensibility: Thereby developers (and users) of specific modelling languages will
not be restricted to concepts which do not fit their needs. However, by allowing for almost ar-
bitrary specific modelling languages, standardization does not happen on the level of those lan-
guages.

Softeam

This submission is based on the "Class Relation method" which was introduced in 1989, and
revised later ([Des94]). Softeam’s proposal is certainly not as complete as for instance the pre-
vious one. In fact, it seems that the authors primarily intend to introduce a few concepts as al-
ternatives to corresponding concepts in the UML. In particular they suggest an "object flow
model" that is to provide a representation of operations behaviour. Most remarkable, from our
point of view, is the introduction of a special state diagram that is based on the "Hygraph" prin-
ciple suggested by Harel. It is motivated by the fact that the state charts often used in object-
oriented modelling neither allow for a well defined integration with object models, nor do they
allow to express generalization/specialization hierarchies. The suggested state diagrams can be
decomposed into two different categories ([Sof97], pp. 7). "Control state diagrams" focus on
the usage of a class, describing what is to be expected from an instance of this class from an
external point of view. The authors state - referring to [Des94] - that control state diagrams can
be completely translated into pre- and postconditions. "Trigger state diagrams" represent a par-
ticular implementation of a control state diagram. In other words: They describe the actual dy-
namics a class has to implement in order to satisfy the requirements specified in a correspond-
ing control state diagram. Figure 7 gives an overview of the control state diagram metamodel.

Application Specific
Modelling Languages

Domain Specific
Modelling Languages

General Purpose
Modelling Languages

Specific

S
pe

ci
al

iz
at

io
n

Generic

high

S
em

an
tic

 L
ev

el

low

Fig. 6: Different levels of modelling languages ([IBM97], p. 14)

25

The specialized state charts suggested by Softeam promise both a better integration with other
partial models, and to take advantage of generalization/specialisation. Notice, however, that
the corresponding concepts are not defined in the proposal itself - which comprises only about
30 pages. Instead it is referred to [Des94].

Platinum Technology

Platinum used to be a provider of tools for the development and maintenance of relational
DBMS. With the acquisition of Protosoft, the developer of an object-oriented modelling tool
called "Paradigm Plus", Platinum became one of the major vendors in this market. "Paradigm
Plus" is claimed to support various popular modelling approaches, such as OMT ([Rum91]),
OOSE ([JaCh92]), and Booch ([Boo94)]. Against this background it is not surprising that Plat-
inum’s submission puts strong emphasis on tool interoperability. The proposal includes seven
modelling languages, each of which is assigned to a so called "subject area". Each subject area
represents a certain view on a system - such as object models, dynamic models, architecture
model, etc. The subject areas are defined by seven corresponding metamodels which are tight-
ly coupled. The concepts shared by all seven metamodels are assigned to an additional subject
area called "Foundation and Common Subject Areas", which in turn is defined in a correspond-
ing metamodel.

Notice that the COMMA ("Common Object-oriented Methodology Metamodel Architecture")
metamodel, proposed by the OPEN consortium ([FiHe96), "had a major influence" ([Pla97],
p. 13) on those metamodels. Furthermore the metamodels are defined within a common "meta
meta model". It is based on the CDIF meta metamodel ([EIA93], in other words: it uses the
concepts defined in this reference model). Therefore the metamodels can be exchanged be-
tween all tools which are capable of using the CDIF interchange standard formats.

Fig. 7: Control state diagram metamodel ([Sof97], p. 20)

26

The meta metamodel (for an overview see fig. 8) provides a few core concepts which are "to-
tally immutable" ([Pla97], p. 16). "Extensibility" of subject areas can be accomplished by mod-
ifying the corresponding metamodels. Notice, however, that extensibility is restricted to the ex-
pressive power of the concepts defined in the meta metamodel. Since those concepts are essen-
tially restricted to data structures (see fig. 10) it seems that there is no way to specify con-
straints that go beyond the description provided by such structures - as it is possible in the met-
amodel suggested by IBM and ObjecTeam.

Fig. 8: Different levels of models ([Pla97], p. 14)

27

The submission includes an extensive description of the meta metamodel as well as of the met-
amodels (about 2/3 of the whole document), mainly on a level of detail illustrated in figure 9.
By referring to an existing standard for exchanging information between CASE tools (CDIF),
it is probably of special value for tool providers. However, from our point of view the proposal
neglects to consider the requirements of conceptual modelling: A modelling language is not
only thought to define models for the purpose of exchanging them between programs. Instead
it is also a tool to support to an intellectual endeavour. In other words: It includes pragmatic
aspects as well. It seems that these aspects are not Platinum’s primary concern - on the contra-
ry: In the past Platinum has gained its reputation as a tool vendor by supporting many model-
ling languages. In order to hold on to this tradition the proposal is restricted to metamodels
which can be used to define a set of particular modelling languages. To emphasize this point
of view, Platinum does not provide a specific notation. Instead it is argued that the proposed
specifications "are fully compatible with the current state of the art in object modeling nota-
tions" - a statement, which is illustrated by brief examples that refer to other approaches which
put more emphasis on notation ([Pla97], pp. 305). Although the "current state of the art" is hard
to identify, such a statement is rather daring: Notations only make sense with associated con-
cepts. We doubt that the meta metamodel allows to express the semantics of any concept that
may be useful within object-oriented modelling. For instance: How would you express the spe-
cific semantics of delegation (see [FrHa97]).

MetaObject

SubjectArea

MetaClass

MetaAttribute

MetaRelationship

Collectable
MetaObject

Attributable
MetaObject

IsLocalMetaAttributeOf
0..*1

1

1
HasSource

HasDestination

HasSubtype

0..*

0..*

0..*

0..*

1..* 1..*
IsUsedIn

Fig. 9: Concepts of the meta metamodel ([Pla97], p. 23)

28

Ptech

The authors of this proposal first make a few assumptions on the purpose of modelling lan-
guages. They emphasize both, the need to offer a medium to foster effective communication
between humans with different professional backgrounds, and the need for tool interoperabil-
ity ([CeIb97], pp. 1). They provide metamodels for five types of models: "structural models",
"architectural models", "behavioral models", "distributed processing models", and "usage
models". It is remarkable that the authors seem to be very much inspired by relational theory.
In order to define the concepts, they suggest for object-oriented modelling, they often refer to
notions such as "set", "domain", "range", or "relation" - for instance: "The associations that im-
plement the relation are named customer and order." ([CeIb97], pp. 3). The concepts rendered
in fig. 11 give evidence for this assumption as well.

<Name> - the name of the entity being described

ISINSTANCEOF

<entity which this entity is an instance of>

META-(X)-ATTRIBUTE-VALUES

<list of values for the attributes derived from the template from which this entity was
instantiated>

META-(X)-RELATIONSHIP-INSTANCES

<list of relationship instances for the relationships derived from the template from which
this entity was instantiated>

(X)-ATTRIBUTES

INHERITED:
<list of attribute templates which this object inherited from its supertype>

LOCAL:
<list of local attribute templates which this object introduced directly>

(X)-RELATIONSHIPS

INHERITED:
<list of relationship templates which this object inherited from supertypes>

lOCAL:
<list of local relationship templates which this object introduced directly>

"Basic Entity Schema"

Fig. 10:Template for Specifying a "Basic Entity Shema" ([Pla97], p. 19)

29

To some degree this proposal benefits from the precision of relational theory. It lacks, howev-
er, a specific object-oriented point of view - in other words: The authors seem not to have over-
come the separation of function and data. For instance, they speak of "... an operation that can
be performed on instances of a class." ([CeIb97], p. 14) Although the authors state that their
metamodels "guarantee that all Ptech models are logically consistent." ([CeIb97], p. 1), the
documentation of the metamodels does not seem to be complete. While the metamodels are
said to be extensible ([CeIb97], p. 1), it is not demonstrated how an extension can be accom-
plished. Furthermore there is no language included that would allow to specify additional con-
straints. From our point of view, the most remarkable aspect of this proposal is the background
of the Ptech method: It has been used for "understanding, analyzing, capturing, validating, and
documenting business processes and systems." ([CeIb97], p. 1) It is surprising that the authors
did not add specific requirements for object-oriented modelling languages to be applied in the
area of process modelling.

Rational et al.

This submission is backed by a rather impressive consortium including Rational Software, Mi-
crosoft, Hewlett-Packard, Oracle, Texas Instruments, and Unisys. The proposed "Unified
Modelling Language" (UML) has mainly been developed by Rational Software and has its
roots in three well known object-oriented modelling approaches ([Boo94], [Jac92], [Rum91]).
The material proposed by the consortium is relatively extensive: It includes 13 documents
([Rat97a] .. [Rat97j], the remaining three PDF documents provided by the OMG were appar-
ently damaged) which cover more than 550 pages. Furthermore the background of the UML is
explained in various textbooks ([Boo94], [Jac94], [Jac92], [Rum91], [Der95], [Whi94]), and

Fig. 11:Ptech Object Metamodel ([CeIb97], p. 6)

30

in numerous articles. But it is certainly not the sheer volume, why the UML is already regarded
as a reference - often without discussing its qualities. Even within the competing proposals to
the OMG the UML seems to have gained an outstanding position. This may be due to the fact
that it is associated with three protagonists of the object-oriented modelling arena. Furthermore
it seems that most of the other submitters have accepted the relevance of this proposal, since
they describe how their metalanguages, or metamodels respectively would allow to specify the
UML modelling languages (for instance [IBM97], [CeIb97]) - or they restrict their efforts to
providing extensions to the UML (like [Sof97]).

Taking into account the obvious relevance of the UML as well as the extent of the available
documents, we decided to analyze it in more detail in another report ([FrPr97]). Compared to
the previous approaches, the UML is based on, the language description submitted to the OMG
is much more comprehensive (fig. 12 gives an impression). Although some concepts of the
original approaches, such as data flow diagrams, which are part of OMT, are not supported an-
ymore, the UML almost appears like a superset of the languages it originates from. It supports
nine types of diagrams. Static aspects can be rendered on various levels of abstraction. In ad-
dition to class or object diagrams, component diagrams serve to map existing software com-
ponents and their interrelationships. Deployment diagrams can be used to render dependencies
between runtime systems across various platforms. Collaboration diagrams allow to express
message flows between objects. Sequence diagrams, state diagrams, and activity diagrams
serve to render various dynamic aspects. Furthermore the UML provides use case diagrams as
suggested in [Jac92]. While the variety provided with those diagrams improves the chances to
find a diagram type which is appropriate for a particular view, it can be a burden at the same
time, since some of the diagrams (like sequence diagrams, state diagrams, and activity dia-
grams) are overlapping in a subtle way.

The UML is defined by an object-oriented metamodel which features the same notation as the
UML itself. The metamodel is supplemented by natural language descriptions. In order to al-
low for language extensions, the UML includes, among other things, a concept called "stereo-
type". A stereotype can be assigned to a set of modelling elements very much like a predicate.
Notice, however, that the UML does not offer means to formalize the semantics of a stereo-
type. Hence, the semantics of a stereotype depends on human interpretation or on specialized
tools. From our point of view the differentiation between type, class, and interface is not con-
vincing: "Class is a subtype of Type, and therefore instances of Class have the same property
as instances of Type. The fundamental difference being that Type instances specify interfaces,
whereas Class instances specify the realization of these interfaces." ([Rat97a], p. 57) Reducing
a type to an interface means to widely abstract from its semantics - which does not correspond
to common ideas about types.

Without any doubt, the UML marks a clear progress compared to its direct predecessors. Nev-
ertheless it is not completely convincing in the end. Although it comes with a semi-formal met-
amodel, some of its concepts still lack sufficiently precise definitions - use cases are one ex-
ample. Furthermore, the UML lacks possibilities to specify additional constraints in a formal
way. Different from IBM/ObjecTeam or Platinum, Rational et al. focus on the use of the lan-
guage. However, it seems questionable whether the extent and variety of concepts provided
with the UML will not confuse the prospective users. It is by no means easy to learn and use.
For a more detailed evaluation see [FrPr97].

31

4.2 Additional Approaches
Beside the official submissions to the OMG there are numerous other approaches that contrib-
ute to the state of the art as well - from various perspectives (for instance [Mey97], [Coa95],
[GoRu95]). From our point of view, one of them is of outstanding importance since it is a very
recent effort which is backed by a number of researchers, most of them with a remarkable rep-
utation in the field of object-oriented software development. It has evolved from a joint re-
search effort called OPEN ("Object-oriented Process, Environment, and Notation"), a part of
which is the specification of the OPEN Modelling Language (OML, see fig. 13). Different
from the companies that submitted their proposals to the OMG, OPEN is an initiative launched
solely within an academic context. OPEN has been developed further from a number of previ-
ous approaches, like [Col89], [Des94], [Fir92], [Gra91], [HeEd94], [Hen92]. As it is indicated
by its name, the members of the initiative clearly want the OPEN specifications to become
standards ([FiHe96], p. 4). Nevertheless, they did not submit the already existing specifica-
tions to the OMG. A submitting organisation has to be a "contributing member" of the OMG.
Furthermore it has to provide a statement about its willingness to make the proposed "technol-
ogy ... commercially available within 12 months of adoption" ([OMG96a], p. 24) - whatever
that means for modelling languages.

Fig. 12:Basis modelling concepts within UML ([Rat97a], p. 24)

32

The OML allows for 15 different diagrams ([FiHe96], pp. 131), including most of those of-
fered by the UML. The diagram types are divided into four categories: "Semantic nets", which
include inheritance diagrams and cluster diagrams, "scenario class diagrams", which are used
to render various views on scenarios, such as use cases. "Interaction diagrams" are another cat-
egory. They include collaboration diagrams that serve to render the message flow between ob-
jects. The fourth category consists of "state transition diagrams". Similar to the UML, the
OML features stereotypes as a mechanism to extend the language. "Multi object" is a concept
that serves to render "... any homogeneous collection of objects that are instances of the same
class or type" ([FiHe96], pp. 226). While class diagrams usually do not require such a concept,
since one may use cardinalities for the same purpose, there are other abstractions - like inter-
action diagrams - where it may be helpful to explicitly render a collection. Similar to other ap-
proaches, the OML provides a concept called "cluster" that serves to group a set of objects,
classes, or parts of non-object-oriented software into cohesive collections. Clusters may in-
clude clusters. A cluster may have a class and a type. Furthermore a cluster class may be spe-
cialized from another cluster class ([FiHe96], pp. 47). Unfortunately the authors neglect to
specify precisely what they mean by "cluster inheritance".

While the notation of a modelling language in general is hard to judge, the OPEN notation of-
fers one feature that may foster a more convenient use of the language for many people: Beside
the full range notation, there is a "light" version that includes a fairly small set of the most rel-
evant concepts ([FiHe96], pp. 199). "Drop-down" boxes are another concept which allows to
adapt the level of detail to be rendered. Each modelling element can be associated with a drop-
down box that serves to display a selection of the elements’ traits (specific information about

Fig. 13:Partial OML metamodel for objects and their classes and types ([FiHe96], p. 5)

33

the modelling element, like an attribute of a class). While the OML includes some interesting
features and offers a number of advantages over the UML, we can hardly agree with the au-
thors who suggest that their approach offers the "best available notation" and defines the state
of the art of object-oriented modelling languages ([FiHe96], p. 200). Like the UML, the OML
does not allow for a formal specification of user defined constraints. Furthermore some of the
concepts suggested with the OML are not sufficiently formalized. Comparing the OML against
the UML reveals that both have their specific strengths and shortcomings (see [FrPr97]).
Hence, one may conclude that none of them defines the state of the art on its own.

4.3 Open Research Questions
Assuming that modelling languages are of pivotal importance for the way people perceive and
conceptualize real world domains, and how they design software, the design of a general mod-
elling language is a challenging task. This is for various reasons. Firstly, there is variety - both
in domains and in software systems. For instance, there are certainly essential differences be-
tween traffic control systems, vending machines, or marketing information systems. This is the
case for the corresponding terminologies as well as for abstractions used to render system fea-
tures. Additionally, there is an immense variety of people who use a modelling language - both
as readers and writers. Since it can be expected that this variety is accompanied by a wide range
of individual perceptions, conceptualizations, and preferences, it is almost impossible to de-
sign a language that fits the needs of all potential users. Secondly there are trade-offs. A mod-
elling language should be easy to use. Its notation should be intuitive, which implies that it cor-
responds to the conceptualizations its users prefer. At the same time it should support the de-
sign and implementation of software. At some point, that requires to introduce formal concepts
which are suited to be mapped to implementation languages. Furthermore there is the well
known trade-off between quality, cost, and time. While it is difficult to tell how a modelling
language relates to this trade-off, we cannot assume that quality, cost, and time are independent
of the modelling languages used within a project. Thirdly there is arbitrariness. Like any arti-
ficial language, a modelling language should be designed to fit its purpose. However, it cannot
be deduced logically from this purpose. This thought alone implies that arbitrary decisions can
hardly be avoided. Furthermore, dealing with trade-offs will usually require compromises that
will, to a certain degree, reflect subjective preferences rather than substantial reasons.

Comparing the current state of the art of object-oriented modelling against those challenges
reveals a remarkable lack of research. Regarding a modelling language as an instrument for
software development would suggest to start with a thorough requirements analysis, which in-
cludes a number of questions, for instance:

• What are the purposes the language is to be used for?

• Who are the prospective users of the modelling language?

• What are the concepts a language should provide in order to fit their cognitive styles?

• How does an intuitive notation look like?

There is no doubt that answering these questions requires some sort of empirical research. The
authors of object-oriented modelling methods or languages sometimes emphasize the experi-
ence they have gathered with applying their approach in practice (for instance [FiHe96], p. 9,
or [CeIb97], p. 1). Vendors and consultants have certainly received some kind of feedback
from their customers. Additionally, there are forums on the internet dedicated to object-orient-

34

ed modelling (like comp.obj). However, it is not too daring to state that none of those activities
has resulted in a representative and detailed analysis of user requirements. It is remarkable that
up to now there has been no sophisticated study of how people perceive and deal with concepts
and notations of object-oriented modelling languages (at least we do not now of any). There
have been a few studies on the use of entity relationship (ER) modelling ([Hit95], [GoSt90]).
They indicate that ER models are not intuitive at all for many people. Our experience, as well
as the similarity between object models and ER models suggest that this is also the case for
object-oriented modelling. Approaches like the UML or the OML, which offer a wide range
of different modelling languages, can be expected to be even less intuitive for many prospec-
tive users. Furthermore some concepts featured by those languages, such as use cases, are dif-
ficult to understand. For this reason, applying them can easily result in bad design (for a de-
tailed analysis of pitfalls see [Ber97]). In other words: Without substantial knowledge about
the way how people perceive and apply modelling concepts, it is hard to tell whether those con-
cepts contribute to software quality - or to "disaster" ([Ber97]).

There are modelling approaches and studies which put more emphasis on user involvement,
like [Che81], [Mum95], [DaLe91]. They, however, originate in the social sciences and lack
concepts to support later stages of the software development process. It is not surprising that
those approaches have evolved within a scientific community that apparently has no links to
the field of object-oriented modelling.

Beside the lack of research on user perceptions and preferences, there is a wide range of do-
mains and purposes that suggest the use of modelling languages. To give a few examples: busi-
ness process (re-) design, workflow management, organisational design, enterprise modelling,
design of document management systems, design of integrated circuits, design in the field of
computer telephony integration (CTI). During the last years a lot of special purpose modelling
approaches have emerged in those fields (for instance: [Fra97], [Fra94], [IsSt95], [Oul95],
[Sch95], [Tay95]). While they usually require specialized concepts, many of them are closely
interrelated with object-oriented modelling. For instance: Modelling a business process usual-
ly requires to refer to information specified within an object model. In order to foster integra-
tion, it is helpful to regard documents as objects which require special concepts. None of the
modelling languages discussed in 4.1, 4.2 includes special concepts to cover one of the exam-
ple fields mentioned above. Furthermore some of those fields are still in a virgin state, although
they are of increasing relevance - like business process modelling or enterprise modelling.
Against the background of standardization, it is important to notice that additional require-
ments for modelling languages can be expected from various evolving areas.

While reusability has been a research topic for long, there are two recent approaches that have
gained remarkable attention: design patterns ([GaHe95]) and frameworks ([LeRo95]). They
promise to deliver reusable artifacts which are rather flexible and/or convenient to use. Never-
theless, there is only little experience about how to integrate them in the process of software
development. This is especially the case for design patterns since they are - by definition - less
formal in nature than frameworks. It seems characteristic that, despite these problems, some of
the approaches discussed in 4.1, and 4.2 already feature concepts to describe design patterns
(for instance: [Rat97a], [FiHe96]) - however, without specifying them in an adequate way (for
instance: [Rat97a] defines a design pattern as "a template collaboration", p. 66).

In order to specify/standardize modelling languages you need meta models/languages. Among
other things, they should allow for convenient and safe extensions of the corresponding object

35

level languages. At the same time a meta language perspective, as emphasized in [IBM97] or
[Pla97], allows to abstract widely from some problems occurring on the level of a particular
modelling language - like user perceptions or preferences. For this reason it may appear that
an approach like the one suggested by [IBM97] provides a satisfactory solution at least for the
metalanguage level. However, this is not the case. Within computer science there is a wide
range of alternatives. Beside general, well known approaches like predicate calculus, or alge-
braic specification, there are many special approaches that define representations for metalan-
guages to be used for CASE tools or Meta CASE tools respectively (for instance: [EbWi96],
[KeSm96]). While there are requirements for metalanguages, like completeness, simplicity,
and correctness (see [SüEb97], pp. 2), it is still difficult to compare them in an objective sense:
Similar to modelling languages to be used on an object level, metalanguages are artificial.
Therefore they are necessarily arbitrary to some degree. This is an important aspect for another
reason as well: Even with metalanguages you cannot completely neglect cognitive styles of
prospective users: An extensible metalanguage/metamodel is also used by people who have
their own ideas about language concepts and notation - although the group of people who work
on a meta level is much smaller than the group of those who use a modelling language on an
object level.

5. Concluding Remarks

Our overview of the current state of the art has shown that object-oriented modelling is a still
evolving field with relevant problems and challenges still to be overcome. To summarize, we
can state that there is lack of knowledge about how users perceive and apply object-oriented
modelling languages. There is no substantial knowledge about how the various views, offered
by some approaches, relate to development cost and software quality. Evolving new modelling
areas, like business or enterprise modelling, have not been sufficiently taken into account by
most object-oriented modelling languages. Furthermore the field of object-oriented modelling
lacks a common focus: There is work on metamodels with more or less formal rigour, while
other approaches focus on the application of modelling languages. There is also variety in the
backgrounds of people working on various aspects of object-oriented modelling; to name a
few: programming languages, database design, artificial intelligence. Furthermore the motives
range from purely academic to greatly commercial.

Against this background one can hardly speak of a mature state of the art. While this thought
would recommend further research in object-oriented modelling, there is yet another, more es-
sential, reason to beware of premature standards: Although object-orientation offers substan-
tial benefits and seems to be the dominating paradigm in software engineering, it is question-
able whether or not it is satisfactory in the long run. Firstly, you have to take into account that
there are alternative modelling approaches which offer particular benefits (for instance: Petri
nets, rule based systems). There is need for thoroughly analyzing how object-oriented languag-
es relate to these approaches, both in terms of semantics, and pragmatics (when to use a par-
ticular approach). Secondly, there is no doubt that object-oriented modelling does not cover
the whole range of challenges to be dealt with in software development. Beside being an engi-
neering task, the development of software can also be seen as a process that depends on social
and psychological aspects: Different, and competing, goals are involved, as well as a wide
range of interpretations and preferences. There are a few approaches which emphasize these
aspects. They have a strong epistemological background and try to go beyond a mere engineer-
ing perspective. The authors refer to constructivism [Floy92] as well as to speech act theory

36

and hermeneutics ([Win95], [WiFl94], [BuZü90]). They argue that the traditional engineering
perspective is not adequate for system design, since system design both depends on and has
impact on organisational change. For this reason those approaches focus on natural language
and social interactions in order to gain a deep understanding of the current application domain
and its potential for change. While some of those approaches remain rather abstract and lack
the rigour that is required in software development, they emphasize an important aspect: Soft-
ware development can hardly be reduced to the use of object-oriented modelling languages.

This thought is raising yet another objection: Like any other language, modelling languages
are tools for thinking. They may help with analyzing problems and finding solutions. However,
at the same time they may bias perception and conceptualization of those who use them. While
we tend to assume that object-oriented modelling allows for "natural" abstractions of the real
world, it can hardly be denied that object-orientation has its roots in software engineering. In
other words: Since object-oriented concepts are definitely influenced by ideas about system
design, it is hardly possible to totally abstract from the system level during object-oriented
analysis - not to talk about design. (Notice that there is hope: Maybe both software systems and
the "real" world can be described in a "natural" way using the same, or at least corresponding
concepts.) For this reason it may be an alternative to concentrate on more "natural" languages
which allow to (re-) construct a domain without the bias imposed by an object-oriented mod-
elling language - an approach that is, for instance, suggested by [OrSc96]. However, such an
approach does not come without pitfalls either. Firstly, there is good reason to assume that any
language will influence the way we perceive and conceptualize reality ([Who59]). Secondly,
a modelling language which does not integrate well with concepts needed for system design
and implementation will increase the chance of friction.

From an academic point of view software development in general, conceptual modelling in
particular has not reached a level of maturity that would recommend to freeze a certain para-
digm by standardizing corresponding modelling languages. Although there has been consider-
able progress during the last years, we still agree with the authors of an open letter to the OMG
([MeSh93]) who, in 1993, emphatically advised against standardization of object-oriented
modelling methods (which includes the standardization of modelling languages)1:

"Standardization of this rapidly developing technology will be out of date almost immediately.
Not only is standardization futile, but, to the extent that it succeeds, positively dangerous.
Standardization will discourage the innovation required to advance and mature the methods."

However, things look different from an economic point of view: There is no doubt that stand-
ards are of crucial importance for establishing integrated information systems. Furthermore
they foster reusability, help to protect investments, and decrease transaction cost. Hence, in the
end it comes down to the trade-off between the benefits of standardized representations and
the pitfalls of investing into premature concepts. This decision is beyond the capabilities of IS
research: It finally happens in market-like settings - only if enough players see a chance for an
equilibrium between the incentives and the cost of standardization, a standard may be estab-
lished.

1. In the meantime some of them, like Booch, Rumbaugh, or Wirfs-Brock, have apparently changed their
mind, since they participated in the preparation of proposals to the OMG.

37

References

[AcDa91] Ackroyd, M.; Daum, D.: Graphical notation for object-oriented design and pro-
gramming. In: JOOP, Vol. 3, No. 5, 1991, pp. 18-28

[And96] Anderson, Michael J.: Draft Workflow Standard - Interoperability. Abstract Spe-
cification WFMC-TC-1012, 3-June, 1996

[Ala88] Alabisco, B.: Transformation of data flow analysis models to object-oriented
design. In: Meyrowitz, N. (Ed.): OOPSLA ’88 - conference proceedings, San
Diego, Sept. New York, 1988, pp. 335-353

[ArBo91] Arnold, P.; Bodoff, S.; Coleman, D.; Gilchrist, H.; Hayes, F.: An Evaluation of
Five Object-Oriented Development Methods. Report No. HPL-91-52, June 1991
Bristol 1991

[Bai89] Bailin, S.C.: An object-oriented requirements specification method. In: Commu-
nications of the ACM, Vol. 32, No. 5, pp. 608-623

[Ben93] Ben-Natan, R., CORBA: A Guide to Common Object Request Broker Architec-
ture. McGraw-Hill, New York et al. 1995

[Ber93] Berard, E.V.: Essays on Object-Oriented Software Engineering. Vol. I, Engle-
wood Cliffs, NJ: Prentice Hall 1993

[Ber97] Berard, E.V.: Be Careful With "Use Cases". 1997. Obtained via http://
www.toa.com/pub/html/use_case.html

[Ber86] Berard, E.V.: An Object-Oriented Design Handbook. Rockville, MD 1986

[Big97] Biggs, P.: A Survey of Object-Oriented Methods. Obtained via http://
www.dur.ac.uk/~dcs3pjb/survey.html

[Boo94] Booch, G.: Object-oriented Design with Applications. 2nd ed., RedwoodCity, Ca.:
Benjamin Cummings 1994

[Bou91] Bourbaki, N.: Toward a definition of object-oriented languages, part 1. In: Journal
of Object-Oriented Programming, March/April 1991, pp. 62-65

[BrDr93] Bröhl, A.-P.; Dröschel, W. (Eds.): Das V-Modell: Der Standard für die Software-
entwicklung mit Praxisleitfaden. München, Wien: Oldenbourg 1993

[BuZü90] Budde, R.; Züllighoven, H.: Software-Werkzeuge in einer Programmierwerkstatt
- Ansätze eines hermeneutisch fundierten Werkzeug- und Maschinenbegriffs.
München: Oldenbourg 1990

[Bu84] Buhr, R.: System Design with Ada. Englewood Cliffs, NJ: Prentice Hall 1984

[CDI96] CDIF: Harmonization of CDIF with other Standards Bodies, 96-07-26, 1996.
Obtained via http://www.cdif.org/intro.html

[CeIb97] Cerrato, J.; Ibrahim, H.: The Ptech Method for Object-Oriented Development
Version 1.0, 1997. Obtained via http://www.omg.org/library/schedule/
AD_RFP1.html

[Che87] Cherry, G.: PAMELA 2: An Ada-Based Object-Oriented Design Method. Reston,
Va., 1987

38

[Che81] Checkland, P.: Systems thinking, systems practice. Chichester et al.: Wiley 198

[Coa95] Coad, P.: Object Models: Strategies, Patterns, and Applications. Englewood
Cliffs, NJ: Prentice Hall 1995

[Col89] Colbert, E.: The Object-Oriented Software Development Method: A Practical
Approach to Object-Oriented Development. In: Proceedings of TRI-Ada ’89 -
Ada Technology in Context: Application, Development, and Deployment. New
York: ACM Press 1989, pp. 400-415

[Col94] Coleman, D. et al.: Object-Oriented Development. The Fusion Method. Engle-
wood Cliffs, NJ: Prentice-Hall 1994

[CoYo91] Coad, P.; Yourdon, E.: Object-Oriented Design. Englewood Cliffs, NJ: Prentice
Hall 1991

[CoYo90] Coad, P.; Yourdon, E.: Object-oriented analysis. Englewood Cliffs, NJ: Prentice
Hall 1990

[CrRo92] Cribbs, J.; Roe, C.; Moon, S.: An Evaluation of Object-Oriented Analysis and
Design Methodologies. New York: SIGS Books 1992

[CuBe86] Cunningham, W.; Beck, K.: A diagram for object-oriented programs. In: Meyro-
witz, N. (Ed.): OOPSLA ’86 - conference proceedings. New York 1986, pp. 39-
43

[DaLe91] Davies, L.; Ledington, P.: Information in Action. Soft Systems Methodology.
Houndmills et al.: Macmillan 1991

[DeFa92] De Champeaux, D.; Faure, P.: A comparative study of object-oriented analysis
methods. In: JOOP, No. 1, Vol. 5, 1992, pp. 21-33

[Der95] Derr, K.W.: Applying OMT: A practical step-by-step guide to using the object
modeling technique. New York: SIGS Books 1995

[Des94] Desfray, P.: Object Engineering - The Fourth Dimension. Reading, Mass.: Addi-
son-Wesley 1994

[EbWi96] Ebert, J.; Winter, A.; Dahm, P.; Franzke, A.; Süttenbach, R.: Graph Based Mode-
ling and Implementation with EER/GRAL. Thalheim, B. (Ed.): Proceedings of
the 15th International Conference on Conceptual Modeling. Berlin et al.: Springer
1996, pp. 163-178

[EbSü96] Ebert, J.; Süttenbach, R.; Uhe, I.: Meta-CASE in Practice: A Case for KOGGE.
Informatik Fachberichte No. 22, Universität Koblenz-Landau 1996

[Edw89] Edwards, J.: Lessons learned in more than ten years of practical application of the
Object-Oriented Paradigm. London 1989

[EIA93] CDIF Framework for Modeling and Extensibility, EIA/IS-107, Electronic Indu-
stries Association, November 1993

[EmKu92] Embley, D.W.; Kurtz, B.D.; Woodfield, S.N.: Object-Oriented Systems Analysis.
A Model-Driven Aproach. Englewood-Cliffs, NJ: Prentice Hall 1992

[Ern97] Ernst, J.: Introduction to CDIF. 1997, obtained via http://www.cdif.org/

39

[ESA89] European Space Agency (ESA): HOOD Reference Manual. Issue 3.0. Nordwijk
1989

[Fel87] Felsinger, R.: Object-Oriented Design, Structured Analysis/Structured Design,
and Ada for Real-time Systems. Mt. Pleasant, SC 1987

[FeSi91] Ferstl, O.K.; Sinz, E.J.: Ein Vorgehensmodell zur Objektmodellierung betriebli-
cher Informationssysteme im Semantischen Objektmodell (SOM). In: Wirt-
schaftsinformatik, Vol. 33., No. 6, 1991, pp. 477-491

[FeSi90] Ferstl, O.K.; Sinz, E.J.: Objektmodellierung betrieblicher Informationssysteme
im Semantischen Objektmodell (SOM). In: Wirtschaftsinformatik, Vol. 32., No.
6, pp. 566-581

[FiKe91] Fichman, R.G.; Kemerer, C.F.: Object-Oriented and Conventional Analysis and
Development Methodologies: Comparison and Critique Boston, Ma. 1991

[Fir92] Firesmith, D.: Object-oriented requirements analysis and logical design. Chiche-
ster 1992

[FiHe96] Firesmith, D.; Henderson-Sellers, B.; Graham, I.; Page-Jones, M.: OPEN Mode-
ling Language (OML). Reference Manual. Version 1.0. 8 December 1996. Obtai-
ned via http://www.csse.swin.edu.au/OPEN/comn.html

[Flo92] Floyd, Ch. (Ed.): Software Development and Reality Construction. Berlin et al.:
Springer 1992

[FrPr97] Frank, U.; Prasse, M.: A Comparison of the Unified Modelling Language (UML)
and the Open Modelling Language (OML). Arbeitsberichte des Instituts für Wirt-
schaftsinformatk, No. 4, Koblenz 1997

[FrHa97] Frank, U.; Halter, S.: Enhancing Object-Oriented Software Development with
Delegation. Arbeitsberichte des Instituts für Wirtschaftsinformatk, No. 2,
Koblenz 1997

[Fra97] Frank, U.: Enhancing Object-Oriented Modeling with Concepts to Integrate Elec-
tronic Documents. In: Proceedings of the 30th HICSS, vol. VI, ed. by R. H.
Sprague, Los Alamitos, Ca.: IEEE Computer Society Press 1997, pp. 127-136

[Fra94] Frank, U.: MEMO: A Tool Supported Methodology for Analyzing and (Re-)
Designing Business Information Systems. In: Ege, R.; Singh, M.; Meyer, B.
(Ed.): Technology of Object-Oriented Languages ans Systems. Englewood Cliffs:
Prentice Hall 1994, pp. 367-380

[Fra93] Frank, U.: A Comparison of two Outstanding Methodologies for Object-Oriented
Design. Arbeitspapiere der GMD, No. 779, Sankt Augustin 1993

[GaHe95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Reading/Mass. et al.: Addison-Wesley 1995

[GoRu95] Goldberg, A.; Rubin, K.S.: Succeeding with Objects: Decision Frameworks for
Project Management. Reading, Mass.: Addison-Wesley 1995

[GoRu92] Goldberg, A.; Rubin, K.S.: Object Behaviour Analysis. In: Communications of
the ACM. Vol. 35, No. 9, 1992, pp. 48-62

40

[GoSt90] Goldstein, R.C.; Storey, V.C.: Some Findings on the Intuitiveness of Entity Rela-
tionship Constructs. In: Lochovsky, F.H. (Ed.): Entity Relationship Approach to
Database Design and Query. Amsterdam: Elsevier 1990

[Gra91] Graham, I.: Object-Oriented Methods. Wokingham et al.: Addison-Wesley 1991

[HaWi93] Halladay,S.; Wiebel, M.: Object-Oriented Software Engineering. Englewood
Cliffs, NJ: Prentice Hall 1993

[HeEd94] Henderson-Sellers, B.; Edwards, J.M.: Book Two of Object-Oriented Know-
ledge: The Working Object. Object-Oriented SoftwareEngineering: Methods and
Management. Sidney et al.: Prentice Hall 1994

[Hen92] Henderson-Sellers, B.: A Book of Object-Oriented Knowledge: Object-Oriented
Analysis, Design and Implementation. A new Approach to Software Engineering.
Englewood Cliffs, NJ: Prentice Hall 1992

[HeCo91] Henderson-Sellers, B.; Constantine, L.L.: Object-oriented development and
functional decomposition. In: JOOP, Vol. 3, No. 5, 1991, pp. 11-16

[Hew91] Hewlett Packard: An Evaluation of Five Object-Oriented Development Methods.
Software Engineering Department, HP Laboritories. Bristol 1991

[Hit95] Hitchman, S.: Practitioner Perceptions on the Use of some Semantic Concepts in
the Entity Relationship Model In: European Journal of Information Systems, Vol.
4, 1995, pp. 31-40

[HoGo93] Hong, S.; Goor, G.: A Formal Approach to the Comparison of Object-Oriented
Analysis and Design Methodologies. In: Nunamaker, J.F.; Sprague, R.H. (Ed.):
Information Systems: Collaboration Technology, Organizational Systems, and
Technolgoy. Proceedings of the 26th International Hawaii International Confe-
renc on System Sciences. Los Alamitos 1993, pp. 689-698

[Hsi92] Hsieh, D.: Survey of object-oriented analysis/design methodologies and future
CASE frameworks. Menlo Park, Ca. 1992

[IBM97] IBM; ObjecTime Limited: OMG OA&D RFP Response Version 1.0. 1997. Obtai-
ned via http://www.omg.org/library/schedule/AD_RFP1.html

[IBM90] IBM: Object-Oriented Design: A Preliminary Approach. Doc. GG24-3647-00.
IBM International Technical Support Center, Raleigh, NC 1990

[ISO90] ISO/IEC1990 IRDS Framework. ISO/IEC-Standard 10027. 1990

[IsSt95] Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: A Methodology for Struc-
tured Hypermedia Design. In: Communications of the ACM, Vol. 38, No. 8,
1995, pp. 34-44

[Jac94] Jacobson, I.; Ericsson, M.; Jacobson, A.: The Object Advantage. Business Pro-
cess Reengineering with Object Technology. Wokingham et al.: Addison-Wesley
1994

[Jac92] Jacobson, I.; Christerson, M; Jonsson, P; Overgaard, G.: Object-Oriented Engi-
neering. A Use Case Driven Approach. Reading, Mass.: Addison-Wesley 1992

[JoFo85] Johnson, R.E.; Foote, B.: Designing Reusable Classes. In: JOOP, Vol. 1, No. 2,
1985, pp. 22-35

41

[KaCH92] Kain, J.B.; Christopherson, M. et al.: Object Analysis and Design. OMG Docu-
ment 92-10-01.PDF, draft 7.0, 1992. Obtained via http://www.omg.org/library/
public-doclist.html

[Kad86] Kadie, C.: Refinement Through Classes: A Development Methodology for
Object-Oriented Languages. Urbana, Il. 1986

[KaSc91] Kappel, G.; Schrefl, M.: Using an Object-Oriented Diagram Technique for the
Design of Information Systems. In: Sol, H.G.; Van Hee, K.M. (Ed.): Dynamic
Modelling of Information Systems. Amsterdam, New York et al. 1991, pp. 121-
164

[KeJa96] Kehoe, R.; Jarvis, A.: ISO 9000-3: A Tool for Software Product and Process
Improvement. New York et al.: Springer 1996

[KeSm96] Kelly, S.; Smolander, K.: Evolution and issues in metaCASE. In: Information and
Software Technology. Vol. 38 (Special Issue: Method engineering and meta-
modelling), No. 4, 1996, pp. 261-266

[Kin89] King, R.: My Cat is Object-Oriented. In: Kim, W.; Lochovsky, F.H. (Ed.): Object-
Oriented Concepts, Databases, and Applications. New York 1989, pp. 23-30

[LeCa91] Lee, S.; Carver, D.L.: Object-oriented analysis and specification: a knowledge
base approach. In: JOOP, Vol. 3, No. 5, 1991, pp. 35-43

[LeRo95] Lewis, T.; Rosenstein, L. et al. (Eds.): Object Oriented Application Frameworks.
Greenwich, CT: Manning 1995

[LiGu86] Liskov, B.; Guttag, J.: Abstraction and specification in program development.
Cambridge, Mass.: MIT Press 1986

[Lor84] Lorenz, K.: Methode. In: Mittelstraß, J. (Ed.): Enzyklopädie Philosophie und
Wissenschaftstheorie. Vol. 2, Mannheim: BI Wissenschaftsverlag 1984, pp. 876-
879

[Man87] Mannino, P.: A Presentation and Comparison of Four Information System
Development Methodologies. In: Software Engine ering Notes, Vol. 12, No. 2,
1987, pp. 26-27

[MaGe88] Masiero, P.; Germano, F.: JSD as an Object-Oriented Design Method. In: Soft-
ware Engineering Notes. Vol. 13, No. 3, 1988, pp. 22-23

[MaOd92] Martin, J.; Odell, JJ.: Object-Oriented Analysis and Design. Englewood Cliffs,
NJ: Prentice Hall 1992

[MaOd95] Martin, J.; Odell, JJ.: Object-Oriented Methods: A Foundation. Englewood Cliffs,
NJ: Prentice Hall 1995

[McSy92] McGregor, J.D.; Sykes, D.A.: Object-Oriented Software Development. Enginee-
ring for Reuse. New York 1992

[MeSh97] Mellor, S.J.; Shlaer, S.: Recursive Design. Englewood Cliffs, N.J.: Prentice Hall
1997

[MeSh93] Mellor, S.J.; Shlaer, S.; Booch, G.; Rumbaugh, J.; Salmons, J.; Babitsky, T.;
Adams, S.; Wirfs-Brock, R.J.: Premature methods standardization considered

42

harmful Open Letter to the Industry In: JOOP, Vol. 6, 1993, No. 4, pp. 8-9

[Mey97] Meyer, B.: Object-Oriented Software Construction. 2nd Ed., Englewood Cliffs:
Prentice Hall 1997

[Mey88] Meyer, B.: Object-Oriented Software Construction. Englewood Cliffs: Prentice
Hall 1988

[Mit84] Mittelstraß, J.: Methodologie. In: Mittelstraß, J. (Ed.): Enzyklopädie Philosophie
und Wissenschaftstheorie. Vol. 2, Mannheim: BI Wissenschaftsverlag 1984, p.
887

[MoPu92] Monarchi, D.E.; Puhr, G.: A Research Typology for Object-Oriented Analysis and
Design. In: Communications of the ACM, Vol. 35, No. 9, 1992, pp. 35-47

[Mul89] Mullin, M.: Object-Oriented Design with Examplex in C++. Reading, Mass.:
Addison-Wesley 1989

[Mum95] Mumford, E.: Effective Systems Design and Requirements Analysis. The
ETHICS Approach. Houndmills et al.: Macmillan 1995

[MyLe84] Mylopoulus, J.; Levesque, H.J.: An Overview of Knowledge Representation. In:
Brodie,M.L.; Mylopoulos,J.; Schmidt,J. (Ed.): On Conceptual Modelling. Per-
spectives from Artificial Intelligence, Databases and Programming. Berlin/Hei-
delberg: Springer 1984, pp. 3-17

[Nie88] Nielsen, K.: An Object-Oriented Design Methodology for Real-Time System in
Ada. San Diego, Ca. 1988

[Obj97] Object Agency: A Comparison of Object-Oriented Development Methodologies.
Obtained via http://www.toa.com/pub/html/mcr.html

[Ode92] Odell, J.J.: Modelling objects using binary-and-entity-relationship approaches.
In: JOOP, June 1992, Vol. 5, No. 3, 1992, pp. 12-18

[OMG96a] Object Management Group: Object Analysis & Design RFP-1, ad/96-05-01,
1996. Obtained via http://www.omg.org/library/public-doclist.html

[OMG96b] Object Management Group: Common Facilities RFP-4: Common Business
Objects and Business Object Facility. OMG, TC 13CF/96-01-04, 1996. Obtained
via http://www.omg.org/library/public-doclist.html

[OMG95a] Object Management Group: OMG Business Object Survey. Doc. 95-6-4, 1995.
Obtained via http://www.omg.org/library/public-doclist.html

[OMG95b] Object Management Group: Common Facilities Architecture Draft 4.0. 1995/95-
01-02, 1995. Obtained via http://www.omg.org/library/public-doclist.html

[OMG92] Object Management Group: OMG Architecture Guide 4. The OMG Object
Model. Draft July, Framingham, Mass. 1992

[OMG97] Object Management Group: A Discussion of the Object Management Architec-
ture. 1997. Obtained via www.omg.org/library/omaa.html

[OrSc96] Ortner, E; Schienmann, Br.: Normative Language Approach - A Framework for
Understanding. In: Thalheim, Bernhard (Ed.): Conceptual Modeling - ER'96 Pro-
ceedings of the 15th International Conference on Conceptual Modeling. Berlin,

43

Heidelberg etc.: Springer 1996, pp. 261-276

[Oul95] Ould, M.A.: Business Processes: Modelling and Analysis for Re-Engineering and
Improvement. Chichester et al.: Wiley 1995

[PaBe89] Page, T.W.; Berson, S.E.; Cheng, W.C.; Muntz, R.R.: An Object-Oriented Mode-
ling Environment. In: Meyrowitz, N. (Ed.): Object-Oriented Programming:
Systems, Languages and Applications. New York, 1989, pp. 287-296

[Pet92] Petrie, Ch.J. (Hrsg.): Proceedings of the First International Conference on Enter-
prise Integration Modeling Cambridge, Mass.: MIT Press 1992

[Pla97] Platinum: Object Analysis and Design Facility Response to OMG/OA&D RFP-1.
Obtained via http://www.omg.org/library/schedule/AD_RFP1.html

[RaSi87] Rajlich, V.; Silva, J.: Two Object-Oriented Decomposition Methods. Detroit 1987

[Rat97a] Rational: UML Semantics. Version 1.0, 02-13-97, 1997. Obtained via http://
www.rational.com

[Rat97b] Rational: UML Notation Guide. Version 1.0, 02-13-97, 1997. Obtained via http://
www.rational.com

[Rat97c] Rational: UML Summary.0, 02-13-97, 1997. Obtained via http://www.ratio-
nal.com

[Rat97d] Rational: UML Semantics. Appendix M1 - UML Glossary. Version 1.0, 02-13-97,
1997. Obtained via http://www.rational.com

[Rat97e] Rational: Appendix M3: UML Meta-Metamodel Alignment with MOF and CDIF.
Version 1.0, 02-13-97. 1997, Obtained via http://www.rational.com

[Rat97f] Rational: UML Semantics Appendix M4 -Relationship to OMG Technologies.
Version 1.0, 02-13-97. 1997. Obtained via http://www.rational.com

[Rat97g] Rational: UML-Compliant Interchange Format. Version 1.0, 02-13-97, 1997.
Obtained via http://www.rational.com

[Rat97h] Rational: UML Semantics Appendix M5 -Relationship to Reference Model of
Open Distributed Computing. Version 1.0, 02-13-97, 1997. Obtained via http://
www.rational.com

[Rat97i] Rational: UML-Compliant Object Analysis & Design Facility. Version 1.0 beta 1,
02-13-97. 1997, Obtained via http://www.rational.com

[Rat97j] Rational: Mapping of UML to CORBA IDL. Version 1.0 beta 1, 02-13-97. 1997.
Obtained via http://www.rational.com

[Ree95] Reenskaug, T.: Working with Objects: The OORAM Software Engineering
Method. Englewood Cliffs: Prentice Hall 1995

[Ren82] Rentsch, T.: Object-Oriented Programming. In: SIGPLAN Notices, Vol. 17, No.
12, 1982

[Rob92] Robinson, P.: Hierarchical Object-Oriented Design. London: Prentice Hall 1992

[Rum96a] Rumbaugh, J.: Notation notes: Principles for choosing notation In: Journal of
Object-Oriented Programming, Vol. 8, No. 10, 1996, pp. 11-14

44

[Rum96b] Rumbaugh, J.: To form a more perfect union: Unifying the OMT and Booch
methods In: JOOP, Vol. 8, No. 8, 1996, pp. 14-18

[Rum91] Rumbaugh, J. et al.: Object-oriented Modelling and Design. Englewood Cliffs,
N.J.: Prentice Hall 1991

[Sch94] Schmauch, Ch.H.: ISO 9000 for Software Developers. Milwaukee, Wis.: ASQC
Quality Press 1994

[Sch97] Schnur, B.: Objektorientierung in Versicherungsunternehmen. Die Branche gibt
sich bislang noch zurückhaltend. In: Informatik Spektrum,Vol. 20, No. 1, 1997,
pp. 52-53

[Sch95] Schwabe, D., Ross, G.: The Object-Oriented Hypermedia Design Model. In:
Communications of the ACM, Vol. 38, No. 8, 1995, pp. 45-48

[SeSt87] Seidewitz, E.; Stark, M.: Towards a General Object-Oriented Software Develop-
ment Methodology. In: Peterson, G.E. (Ed.): Object-Oriented Computing - Tuto-
rial. Vol. 2: Implementations. Washington, DC. 1987, pp. 16-29

[ShMe92] Shlaer, S.; Mellor, S.J.: Object Lifecycles - Modeling theWorld in States. Engle-
wood Cliffs, N.J.: Prentice Hall 1992

[ShMe88] Shlaer, S.; Mellor, S.J.: Object-Oriented Systems Analysis - Modeling the World
in Data. Englewood Cliffs, N.J.: Prentice Hall 1988

[Sof97] Softeam: Submission of the specification of Object Analysis & Design Facility
OMG RFP response, 1997. Obtained via http://www.omg.org/library/schedule/
AD_RFP1.html

[SüEb97] Süttenbach, R.; Ebert, J.: A Booch Metamodel. Fachberichte Informatik, 5/97,
Universität Koblenz 1997

[Tas97] Taskon: The OOram Meta-Model - combining role models, interfaces, and classes
to support system centric and program centric modeling. A proposal in response
to OMG OA&D RFP-1, 1997. Obtained via http://www.omg.org/library/sche-
dule/AD_RFP1.html

[Tay95] Taylor, D.A.: Business Engineering with Object Technology. New York et al.:
Wiley 1995

[VeCa92] Velho, A.V.; Carapuca, R.: SOM: A Semantic Object Model - Towards an
Abstract, Complete and Unifying Way to Model the Real World. In: Sol. H. (Ed.):
Proceedings of the Third International Working Conference on Dynamic Model-
ling of Information Systems. Delft 1992, pp. 65-93

[Wak93] Wakeman, L.: PCTE: The Standard for Open Repositories. Foundation for Soft-
ware Engineering Environment. New York et al.: Prentice Hall 1993

[WaNe95] Walden, K. ; Nerson, J.-M.: Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems. New York et al.: Prentice Hall: 1995

[WaPi90] Wasserman, A.I.; Pircher, P.A.; Muller, R.J.: The Object-Oriented Structured
Design Notation for Software Representation. In: Computer 23, No. 3, 1993, pp.
50-63

45

[Wei79] Weick, K.E.: The Social Psychology of Organizing. 2nd. ed., Reading, Mass.:
Addison-Wesley 1979

[WFM96] WfMC (Workgroup 1): Interface 1: Process Definition Interchange WfMC TC-
1016, Version 1.0 Beta, May 29, 1996. Obtained via http://www.aiai.ed.ac.uk/
WfMC/ 1996

[Whi94] White, I.: Using the Booch Method - A Rational Approach. New York et al.: Ben-
jamin Cummungs 1994

[Who59] Whorf, B.L.: Language, Thought, and Reality. New York: Wiley 1959

[Win95] Winograd, T.: From Programming Environments to Environments for Designing.
Communications of the ACM, Vol. 38, No. 6, 1995, pp. 65-74

[WiFl94] Winograd, T.; Flores, F.: Understanding computers and cognition - a new founda-
tion for design. 9th print, Reading, Mass.: Addison-Wesley 1994

[Win96] Winograd, T. (Ed.): Bringing design to software. Reading, Mass.: Addison-Wes-
ley 1996

[WiWi90] Wirfs-Brock, R.J.; Wilkerson, B.; Wiener, L.: Designing Object-Oriented Soft-
ware. Englewood Cliffs, NJ.: Prentice Hall 1990

[You97] Yourdon, E.: Rational Software: The first Billion-Dollar CASE Vendor? In:
Application Development Strategies, No. 1, 1997, pp. 1-16

