Comparing Graph-based Program Comprehension Todls
to Relational Database-based Tools

Carola Lange' Harry M. Snedd Andreas Winter
Institute for Software Techndogy Case Consult GmbH Institute for Software Techndogy
University of Koblenz-Landau Fladchstral’e 13 University of Koblenz-Landau
Rheinau 1,D-56075K oblenz D-65197 Wiesbaden Rheinau 1,D-56075K oblenz
Germany Germany Germany

clange@uni-koblenz.de

Abstract

In this paper we compare the experiences of applying the
graph-based GUPRO approach to experiences in apply-
ing ANAL/SoftSpec — an approach based on relational
databases. We present the results of a case study in which
GUPRO has been applied to a multi-language software
system for stock trading (GEOS). Comparing the results
of the case study with experiences of applying
ANAL/SoftSpec to GEOS we show that the graph-
oriented approach enables an efficient way of source
code analysis and program understanding.

Keywords: comparison of program comprehension toadls,
relational database repository, graph-based repository,
querying repositories.

1. Introduction

During the last few yeas lots of program comprehen-
sion tods have been developed in reseach as well asin
industry. To show their usefulness it is apparently neces-
sary to apply these toadls to various maintenance problems
from the field and evaluate them in red use caes. Com-
paring the goplication of different toolsto equal or similar
tasks leads to a better consideration of the pros and cons
of the underlying tool approaches. Therewith, knowledge
about their usability in simplifying the task of understand-
ing complex software systems can be gained. Further
steps in adapting the toals to the demands of the mainte-
nance programmers can be made, fadlit ating an ongoing
improvement of both approaches and todls.

Bellay and Gall presented a cmparison of four differ-
ent Reverse Engineging Tods (Refine/C, Imagix 4D,
Rigi, Sniff+) on WCRE 1997 [1]. The main goal was to
investigate the differences between the tools with respea

! Currently on a scholarship program at the Artificial Intelligence Center
of The University of Georgia (August 2000— May 2001).

harry.sneed@casensult.com

winter@uni-koblenz.de

to the generation of graphicd reports. Based on 80
asssgment criteria Bellay and Gall conclude that it is
difficult to anayze embedded systems with current re-
verse engineeingtools and that in particular the graphica
views and layouts need considerable improvement. They
also state that mixed-languege suppat is a necessty for
red-world applicaions.

Elliot Chikofsky organized a Reverse Engineeing
Demonstration Projed [6]. In a amoperative study among
commercial and non-commercia reseach groups the re-
sults and value of their methods and toals in analyzing the
WELTAB Il Eledion System were demonstrated.

Susan Elliott Sim and Margaret-Anne Storey organ-
ized two conseautively structured tool demonstrations at
CASCON 1999 and WCRE 2000 [20]. Several teams
were given a set of architedural analysis and maintenance
tasks to perform on a common subjed system. This com-
parison provided the tod developers with insights into
their own toodls and gave them the oppatunity to view
other todls, their ability and performanceto provide sup-
port for equal tasks. They also padnt out that tool evalua
tion is necessary to enhance the technology transfer and
widen the accetance of program comprehension todls in
industry.

In contrast to Bellay and Gall's dudy, which empha
sizes tod visualizaion, we focus on comparing diff erent
repository structures. Source @de analysis can be per-
formed either text-based or repository-based. Both types
of approaches were tested and evaluated on the structured
too demonstrations. As an example, for textua based
analysis, the simple dditor fadliti es and basic UNIX-tods
like grep and find were used. The experiencesin applying
Unix toodls to analyze XFig are described in [24]. Soft-
ware development teans, which use repository structures
based on graphs or binary relations representing source
code artifads, also participated in the demonstration (PBS

(Portable Bookshelf) [7] and Rigi [18]). The graphicd
code browsing and program comprehension tool TkSee
[21], which uses repository structures based on relational
databases was evaluated during the CASCON 1999work-
shop. The Relation Partition Algebra (RPA) described by
[13] is another repository-based approadh using binary
relations for data representation. Relational database
management systems provide the underlying repaository
structure for further program comprehension tools. An
approach based on relational databases was first intro-
duced by Linton in [17]; yet, his results regarding re-
sponse time performance were unsatisfadory using
RDBMS available in the ealy 1980Cs. More receant
RDBMS based approaches are described in [5] and [24].
Other repository structures are based on logic oriented
data representations [3], [11], [4], LISP Images[19], syn-
tax trees [26], or hybrid knowledge bases[10].

This paper succeels [24], which describes the results
of applying the CPPANAL source ®de analyzer to the
sources of the stockbroker trading system GEOS. Their
approach is based on relational databases. Here, we pre-
sent the results of applying the graph-based GUPRO ap-
proach [2] to GEOS. Thus, this paper compares the gpli-
cdion of a graph-based approac to program comprehen-
sion with arelational database gproach. It also describes
the ways in which two different tod sets can be combined
into an interoperable reengineaing workbench.

The subsequent parts are organized as follows. Sec-
tion 2 gives a charaderization of the reengneeing projed
at the stock broker in Vienna and first insights into the
maintenance tasks and inquiries of the maintenance pro-
grammers. The gproach pursued in this case study and
the tools used are described in sedion 3. Finally sedion 4
givesinsights about the adual experiences that were made
by applying the todls.

2. Reverse Engineeling of GEOS

GEOS (Global Entity Off ering System) is a stock trad-
ing application system developed in Vienna & a standard
software padage to be sold to banks. It has been urder
development for five yeas. There ae airrently four
banks in Austria axd two banks in Germany using the
system.

GEOS consists of 8 subsystems plus a Java gateway to
the internet. There ae different subsystems for order
processng, conditi ons management, depot administration,
portfolio management, risk management, trading, clea-
ing, and investment management. Each of these systems
has a C++ frontend to serve the distributed graphicd user
interfaces and a C badkend to processthe centralized rela-
tional databases. The Java Internet gateway offers a by-
pass to the C badkend components via awrapper layer.

Analyzing such multi-languege systems naturally requires
an integrated examination of all subsystems.

The system is constantly growing. Currently it has
6,279 source files and 2,364,652 lines of code [22]. Sys-
tems of this sze ad complexity are inherently difficult to
document, because of the grea number of entities and the
even greaer number of relationships. The nature of ob-
jed-oriented software dso leads to a greder number of
interadions between separately compiled modules snce
methods in one dassrefer to methods in another.

When developing GEOS there was no CASE tool
used to dacument the design. The cde was produced
based on the requirement spedficaion in a semi-formal
functional spedfication languege, which does not provide
any information about the technicd architedure. Thus,
the only descriptions of the programs are the sources
themselves and the cmments contained therein.

For this reason, it was dedded to use reverse engi-
neeing toals to recgture design information from multi
language sources and to store it in a software repaository.
The key technology used here is gatic analysis. Through
dtatic analysis, it is possble to generate entity and rela
tionship tables from ead source member, depicting vari-
able references, database access, fil e usage, classinheri-
tance and ather relevant crossreferences. These interme-
diate aoss reference tables for eady module ae then
processed to popllate the repasitory in a relational data-
base [23].

There ae arrently more than 1600components, 3000
modules, 2200 classes, 30,000 interfaces, 34,000 func-
tions, 290,000 function cdls, 192341 dita dedarations
and 895110 dita references. This gives an idea of the
magnitude of the documentation problem. Maintainers
want to have spedfic answers to spedfic questions [9].
Unfortunately the set of questions a maintenance pro-
grammer will ask, in order to comprehend software sys-
tems, cannot be foreseen. Thus, program comprehension
tools have to provide apowerful query mechanism to in-
vestigate software systems [2]. Regarding the architecural
level, these questions are dasdfiable into five main types:
relations between modules and functions, include rela-
tionships, cdl relationships, inheritance relationships and
metrics. Here ae some examples of maintainers specific
guestions:

* How does a cetain module interad with other ele-
ments in the system and which functions belong to a
particular module?

e Which modulesinclude a cetain header file?

e Which function cdls a particular function and which
functioniscdled by a catain function?

* Which classes gedalize a cetain (super) class?

Relational
Database

Abstract:
RepoView

(SQL)

|
|
|
|
1

_____ Conceptual
model

T

Abstract:
GUPRO
(GReQL)

Figure 1: Approach

¢ How many other functions are cdled by a particular
function, or what is the average of cdled functions of
aparticular module?

Scanning through complex diagrams, whether on pa-
per or on a graphicad user interface is no efficient way to
comprehend large software systems. Diredly querying the
data repaository has been shown to be a enabling technol -
ogy in thisfield [14]. Standard SQL queries have drealy
been performed on the database repository [23]. The
GUPRO (Generic Unit for Program Understanding, [2])
approach is now being used, while higher performance
due to the use of graph-based query technology is ex-
peded. Furthermore it should be eaier to formulate am-
plex queries gich as querying of transitive dosures.

3. Approach and Todls

The two approaches compared in this paper follow the
Extrad-Abstrad-View metaphor, where source ®de is
extraded into an analyzable representation. Abstradions
are cdculated by suited analysis feaures and queries,
which are visuali zed afterwards. The data that is extraaded
from code atifadsis defined in a amnceptual model. This
also controls the éstradion in the way that certain ab-
stradions of the data can be queried acmrding to the mn-
ceptual model.

The overall approach is depicted in figure 1. Tables
were extraded from the GEOS source mde with resped
to a conceptual model (extract). The main todls responsi-
ble for the extrad process are a parser component
(ANAL) and a component that creaes the relational data-

base repository (SoftSped). These todls exist for JAVA,
C/C++, and IDL source @de. The repository can be que-
ried (abstract) with the SoftSpec mmponent RepoView
using standard SQL statements. It is posdble to seled
relations from a single table via a SELECT..FROM..
WHERE statement or to make ajoin of several tables by
means of a nested SELECT statement. The results of the
query are displayed (view) in an Excd type table where
they can be viewed or printed out.

By transforming the database repository into a graph,
whose vertices and edges depend on the underlying con-
ceptual model, further abstradions can be performed.
Transforming contents of relational databases into graphs
is straightforward; the database is read out into a graph
structure acording to the conceptual model.

The GUPRO approach provides an adaptable and
extensible workbench for program analysis. GUPRO is
strongly based on gaph technology. Source mde is
parsed into graph structures, which are accesble by
graph algorithms and a general graph query language
GReQL [14]. With GReQL graphs are queried (abstract)
acording to entities (nodes) and associations (edges)
represented in the mnceptual model. GReQL query re-
sults can be viewed in ASCII- or HTML-tables (view).
GUPRO additionally provides source @de browsers [25]
with scdeable representations of source @de throughthe
use of folding techniques. Folding is a technique that can
be used for structuring text documents. In GUPRO, fold-
ing is used to represent the replacaments of the C pre-
procesor and other user defined replacements [15]. Of

Url

name

0. Table
describes — Component name
> h 0. 0.*
name
A A
isModuleOf uses
1. 0.+ A
includes
0..*
Module .
A
1.1 1.1
name isAttributeOf
id
type
A A
isMethodOf isClassOf | A isAttributeOf
0.% 0.+ isSubclassOf
v
Class 0.
name
isMethodOf isAttributeOf
> o <
| * 0.*
0.. 0..
A o
calls .
Method Attribute
0..%
0..% name name

signature

type

Figure 2: Conceptual Model

course, the representation of results in tables and - in
terms of source @de - in browsersisintegrated.

In this paper we focus on the process of abstradion
through querying relational databases or graph-based re-
positories. In the foll owing sedion we sketch the underly-
ing conceptual model, which provides combining
ANAL/SoftSpec and GUPRO. Afterwards, the extrad,
the abstradt, and the view components in both approaches
are described in further detail .

3.1 Conceptual Model

The aithors developed the underlying conceptual
model through discussons in joint medings. It describes
the amount of data, which is exchanged between
ANAL/SoftSpec and GUPRO. The wnceptual model,
depicted in the UML classdiagram in figure 2, defines the
common repository structure for analyzing GEOS on an
architedural level. This conceptual model defines bath,
the relational data base structure used in ANAL/SoftSpec
and the graph-based structure used in GUPRO. The n-
ceptual model represents the -operation of modules,

classes, and methods in order to enable the analysis of
asciations between diff erent entities.

The GEOS system is sparated into various compo-
nents that contain multiple modules. For external docu-
mentation components are aciated to further docu-
ments, accessble by URLSs. In the cae of C++ and Java
modules these ae further decompaosed into classes, which
are olledions of methods and attributes.

For non-objed oriented languages, functional compo-
nents (here dso cdled methods) and attributes are di-
redly associated with modules. The databases accessed
by GEOS modules are represented by their tables, includ-
ing the herein referenced attributes. The associations ren-
der an include hierarchy (includes) between modules, a
class hierarchy (isSubclassOf) between classes, and the
cdl relations (calls) between methods.

3.2 Extract: Generating the GEOSrepository

In order to extrad information from GEOS source
code, first, a series of extradion tools (ANAL) is applied,
which parse the code, extrad the relevant information,

and credae an intermediate program description. In a sec-
ond step, further tools (SoftSpeq processthis intermedi-
ate description to crede the adual relational databases.
The resulting repository database mnsists of 18 kinary
relationship tables plus a document text table mntaining
module structures and comments, for the several language
systems (C, C++, JAVA, RDBMS).

In this case study we have mmbined two separate tool
approaches. Therefore, some kind of transformer was nec-
essry to map the different data structures. For this reason
the relational database was converted to the standard ex-
change format GXL [8], which can be used as input for
the GUPRO tods. In this way, the benefits of alrealy ex-
isting source ®de parsers could be cmbined with the
benefits of GUPRO analyzing and program understanding
techniques.

GEOS consists of 8 subsystems. The examples in this
paper are taken from the investment banking service
subsystem Nostro that is evenly divided between C++ and
C. The resulting database mnsists of 18 tables with com-
bined 28,890 rows. The graph, representing the tables of
the subsystem Nostro, has a size of 795 KB, with 8223
nodes and 20,815 edges.

3.3 Abstract

Once the database repository has been loaded by the
SoftSpec tod, there ae two passble ways to use it: the
adhoc query of cross references, and the generation of
standard system documents. These documents depict the
different hierarchies and networks from the repository,
e.g. function cdl trees, classinheritance trees, and func-
tion sequence diagrams.

Querying the GEOS repository is accomplished hy
RepoView using any standard SQL SELECT statement
supported by the IBM Universal DB2 database system.
For example, the database repository contains a table
Func_Plus, which relates to ead function (Func_Name)
al cdled functions (Target_ Name). A typicd SQL query
(ChedErrOut.sql), which lists all functions that invoke
the function 'ChedErrOut’, is the foll owing;

SELECT Func_Name
FROM Func_Plus
WHERETarget_ Name =“CheckErrO ut”

SQL also provides further queries, which join severa ta-
bles. A detailed description of experiencesin queryingthe
GEOS repository with SQL can be found in [23].

GUPRO is based on gaph tecnology, and
adaptability is given by graph-based conceptual modeling.
In contrast to oljed-oriented modeling, where asocia-
tions are treaed as references from one asciation end to
the other, and which can only be navigated in one direc-
tion, in gaph-based modeling, edges are mnsidered as
first-class citizens. Thus, graph-based modeling provides

navigation of assciations in both diredions - in and
against the orientation of an edge type. Embedding these
feaures into graph query-languages all ows powerful navi-
gation through gaph structures. Here the graph represen-
tation of the tables was queried with the query language
GReQL, a languege espedally suited to graph querying.
The FWR (FROM WITH REPORT) expresson is the
most important language dement. Within the FROMlause
variables are dedared; in the WITH clause the set of pos-
sible variables can be restricted by first order logic predi-
caes. They can also contain regular path expressons in-
cluding (reflexive) transitive dosures. The REPORT
clause spedfies the representation of query results [12]
[14].

The following query (ChedErrOut.grqg) reports — just
as the @ove mentioned SQL query ChedErrOut.sql — the
names of all functions, which are diredly cdli ng the func-
tion with name 'ChedErrOut’. The types of nodes and
edges used in the GReQL query refer diredly to those
depicted in figure 2.

FROM

callee:V{Method},caller:vV{Method}

WITH callee.name = 'CheckErrOut'

AND callee < -- {calls} caller

REPORT caller.name
END

The FROM part dedares two variables, caller and
call ee, of node type Method . The WITH part restricts
the possble asdgnments to callee to those methods
with a name dtribute equal to 'ChedErrOut'. Further-
more, the possble assgnments to calle r are restricted
to those linked to callee by an outgoing edge of type
‘cdls in the second part of the WITH clause. The
REPORT part spedfiesto report the value for the dtribute
name of ead method which fulfill sthe WITH clause.

GreQL is an expresson language; predicates can be
formulated using first order logic and may also contain
path expresgons to describe regular path structures, such
as equences, aternatives and iterations, also including
reflexive and transitive dosures. Queries are dficiently
evaluated by an automaton driven cdculation of the path
expressons. The dallenge of applying GReQL to ared-
world reengineaing case was to evaluate how these means
can be used in order to improve program understanding. A
further reason for applying GReQL to this case was to see
whether the graph-based approach could kegp up with the
original approach of reengineaing GEOS by using rela-
tional databases to represent entities and relations of the
system.

3.4 View

The original viewing aspeds of the SoftSpec toadls
were limited to the table rows as they are stored. The user

gets the SQL column name & the top d ead column and,
thereunder, alist of all seleded valuesin that column or-
dered by primary key. If a value is mising in a row, the
column entry for that row is empty.

In this case study, GReQL queries were evaluated with
the command line GReQL too CLG. CLG supparts three
different output formats of the query results: ASCII tables,
HTML tables and comma-separated format. A more user-
friendly graphicd user interfacein C++ for querying and
browsing gaphs aswell as sipparting loading, editing and
saving of queries and their results is currently under con-
struction [25].

Figure 3 depictsthe HTML result of the formerly men-
tioned GReQL query ChedErrOut.grg, which lists the
names of al methods that are diredly cdling ChedEr-
rout.

= Netscape: GReQL - Query Result (CheckErrOut.gra)

File Edit VYiew Go Communicator Helg
d 2 3 4. 5 & e
Back Forward Reload Home Search Metscape Prit Security

v w!' Bookrarks J& Location: [1g-CheckErcout. htnd {| @7 What's Related
¥]
]
Method
iAddPosbetrag

(AP WVE_Emission

{API WVS Exists FiLk
{APT_WVS Exists Mafiloker
(AP WVS_Exists MazFursLk2
{API_WVS_FinanzHistorisch
{API_WVS_Termindaten

(AP WVE_WertpapierTermine
BAT Tio
iCallBewertenForUebertrag
iCallBuchen

{CallDurchrechnen
CalGeldbuchung
:CallPositErmitteln

iChangeKind Konto

|§ [|

Figure 3: GReQL query result
4. Experiencesin applying GReQL

In this sdion we describe the adual case study - the
kinds of queries that were performed in order to answer
the maintenance programmer’ s questions. |n addition, new
insights into the goplicability of GReQL with resped to
time performance and mightiness of the language @n-
structs are presented.

As introduced in sedion 2, the queries performed on
the Nostro graph are dasdfiable into five main types: re-
lations between modules and functions, include relation-
ships, cdl relationships, inheritance relationships, and
metrics. See [16] for a detailed description of all per-
formed queries and their results. Each type of query, along

with a typicd example, is described in subsedions 4.1 to
4.5. Sedion 4.6 gives an overview of the time perform-
ance of GReQL in comparison to similar SQL queries.
Finaly, the gplicability of the query technique in red-
world use caes to gain a deeper understanding of large
software systemsis discussd in sedion 4.7.

4.1 Module - Function relationships

The maintenance programmer first hasto gain an over-
view of the modules and their methods in order to have an
overview of the whole system. Queries sich as the foll ow-
ing can be dasdfied as queries concerning module-
function relationships:

* Which functions belong to a particular module?

e Which modules contain functions being cdled by a
particular function?

» Which modules use a particular function?

For example, the Nostro system contains a central
module which can be reagnized by its attribute id = 0. In
order to discover which other elements of the system are
related to this gedfic module, you smply traverse dl
incoming and autgoing edges of this module node and list
the mrresponding rodes. The following GReQL-query
(listNeighbors.grg) reports the name of every node that
has adired link to the module with id = O:

FROM m:V{Module}
WITHm.id=0
REPORT
FROM v:V{}
WITH v< ->{} m
REPORT v.name
END
END

The first FROM-WITH part dedares the variable mof
type Module and restricts its assgnments to those module
nodes with attribute id = 0. The nested FROM-WITH-
REPORT clause spedfies to report the names of all nodes
that have a dired relation to m The query result of list-
Neighbors.grq shows that the module with id = 0 is di-
redly asociated to 1409other elements of the system, i.e.
t0 18.3 % of al system elements.

4.2 Include rdationships

The Nostro system contains about 600 modules.
Hence, keguing trad of the include relationships between
these modules is an important asped of understanding
how the individual parts of the software system work to-
gether. Typicd queries about include relationships are the
following;

* Which modules are included by a particular module?

e Which modulesinclude aparticular module?
* Which modules are included by the header files of a
particular module?

For example, the attributes id, name and type of eadh
module that includes the header file 'nndnostr' are reported
by the foll owing query (includedByMod.grq):

FROM inc:V{Module}
WITH inc.name = 'nndnostr’

REPORT
FROM m:V{Module}
WITH inc < -- {includes} m
REPORT m.id, m.name, m.type
END

END

The outer FWR clause dedares a variable inc and re-
gricts its assgnments to module nodes with name
‘nndnostr'. The inner FWR clause dedares a semnd vari-
able of node type module and reports the atribute values
of those modules that include inc . The result of includ-
edByMod.grq lists 43 diff erent modules that include mod-
ule 'nndnostr'.

4.3 Call relationships

More than 3000functions belong to the gproximately
600 modules of the Nostro system. Queries about which
function is invoked by a particular function, and which
function cdls a particular function help understanding
which parts of the system will be influenced by or depend
on changes in the functionality of certain procedures. As
an example, the following GReQL query lists for eah
function al functions that are invoked by the function
(diredlyCall edFuncs.grq):

FROM caller:V{Method}

REPORT caller.name,
FROM callee:V{Method}

WITH caller -- >{calls} callee
REPORT callee.name
END

END

The result of diredlyCalledFuncs.grq lists, in about 7075
lines, the name of ead function (caller) together with
the set of functions (callee) which arediredly cdled by
caller

GReQL aso enables the user to query transitive do-
sures. The following query (cdl Functions.grg) applies the
*' operator to list for ead function all functions that are
cdled dredly or cdled indiredly by a cdled function.

FROM caller:V{Method}

REPORT caller.name,
FROM callee:V{Method}

WITH caller -- >{calls}* callee
REPORT callee.name
END

END

The result of cdl Functions.grq contains about 150,000
rows, listing for ead function caller every function
whose change could have an impad on caller . Since
edges can be navigated in both diredions the diredion of
the arow can be changed in order to enumerate for eadh
function f al functions whose thange might have an im-
pad onf.

The aility of GReQL to query transitive dosures is
one of its ggnificant advantages in comparison to SQL.
Even though newer SQL standards suppat the querying
of transitive closures, having to process a non-predictable
amourt of joint operations limits the possble time per-
formance The processng of transitive dosuresin GReQL
can be performed efficiently by diredly traversing the
graph structure.

4.4 Inheritance rdationships

In urderstanding objed-oriented programs, new diffi-
culties arise due to the posshility of applying (multiple)
inheritance and pdymorphism. Queries about generaliza-
tion or spedalization of a particular classin the system are
classfied as queries about inheritance relationships. Typi-
cd queries are @ foll ows:

* Which clases are spedaizaions of a particular
class?

e Which classes are super classes of a particular class
on adistinct level of generalizaion?

* Which clases are dfeded from multiple inheritance?

The following GReQL query (highestSuperclassgrq)
reports the 'highest' super classof ead class i.e. it reports
the name of ead classand the name of the most general
super classof that class

FROM c,super : V{Class}

WITH ¢ -- >{isSubclassOf}* super
AND
outDegree{isSubclassOf}(super) =0
REPORT c.name, super.name

END

The FROM part dedares two variables, ¢ and super , of
type class The WITH part restricts the possble assgn-
ments such that ¢ hasto be asubclassof super on arbi-
trary level and that super must not be asubclassof any
other class The REPORT part spedfies to report the
name of classc and the name of its highest super class
The result of highestSuperclassgrq lists more than 2000
classname pairs.

45 Metrics

In order to gain insights into the size of the system and
the propartion of the different types, various kinds of met-
rics were cdculated. They can be dassfied into measure-

ments counting spedfic types of nodes or edges, queries
cdculating the number of edges adjacent to the different
types of nodes and metrics cdculating averages. The fol-
lowing are queriestypicdly classfied as metrics:

e What is the number of components, modules, classs,
methods or attributes?

e How many function cdls are implemented in the sys-
tem, a particular module, classor method?

e« What is the average number of functions cdled by
ead function?

* What is the average number of clases that belong to
amodule?

These ae only a small seledion of possble metrics; a
larger variety of software metricsis described e.g. in [27].
To give ametric example in GReQL, the following query
(avgCalledFunc.grq) returns the average number of func-
tions cdled by ead function.

avg(

FROM m:V{Method}
REPORT outDegree{calls}(m)
END)

For the Nostro subsystem this query reports that, on aver-
age, 2.34 functions are cdled by ead function.

4.6 Performance

The time performance of GReQL queries was meas-
ured and compared to the performance of similar SQL
gueries runring on the corresponding relational databases.
In order to analyze the time performance for ead task of
the command line GReQL toadl CLG, four different times
were measured: the duration to load the graph, the time to
evaluate the GReQL query and the times to format and to
print the output file. Loading the graph file (795 KB) with
the CLG tod on a Pentium Ill (600MHz, 256 MB RAM)
takes 3.02 seconds. For standard queries it takes about 4
seoonds to processthe whole query, i.e. to load the graph,
evaluate the query and print the output file. Hence, most
of the exeaution time is "wasted" by reloading the graph
for ead query.

Table 1 lists the time needed to evaluate the query and
the total time needed to perform the graph loading, query
evaluation and output formatting for a series of typicd
GReQL queries. The respedive times for SQL queries are
also listed, measured in 0.5 seconds and performed on an
AMD K6 PC with 300MHz and 128 MB RAM.

For example, retrieving al methods that are diredly
cdling function 'ChedErrOut’ by a GReQL-query takesin
total 3.46 seconds. Running the crresponding SQL query
on the Nostro tables takes about 4 seconds. Comparing the
total times of eady GReQL and SQL query it can be seen
that the query exeaution times are only slightly different.
GReQL has an advantage in being able to traverse outgo-

ing edges of any type, e.g. for listNeighbors.grg, whereas
severa tables have to be looked up and joined to retrieve
this information from the database repaository.

Table 1: Time performance comparison

GReQL SQL
total time evaluation | total time
Query (9 time(sed = (%9
listNeighbours 3.510 0.110 4
diredlyCalledFuncs = 4.830 0.880 35
cdlFunctions 21.200 10.550 -
cntComponents 3.300 0.0 45
cntModules 3.300 0.0 35
cntClasses 3.290 0.0 35
cntFunctions 3.300 0.060 4
cntAttributes 3.360 0.060 35
ChedErrOut 3.460 0.110 4

In order to perform the SQL query diredlyCalled-
Funcs, only the Func_Plus table has to be seached. But in
GUPRO the whole graph has to be loaded. If multiple
gueries used the same drealy loaded graph, 3 semnds
could be saved for the exeaution of eadr GReQL query
(asuming the aurrent Nostro graph is used). Then the
much shorter GReQL evaluation times could be mmpared
to the performance of SQL on the crresponding rela-
tional databases. This would result in a significant differ-
ence in the time performance which can easily be seen
from the particular entriesin table 1.

The GReQL query cdlFunctions.grq as introduced in
sedion 4.3 cdculates the transitive dosure of cdled func-
tions for ead function of the Nostro system. Since the
SQL standard, used in RepoView, does not suppart query-
ing transitive dosures no corresponding SQL query could
be performed on the database repaository.

We ae awvare of the fad that these measurements and
their comparison can only be tentative, becaise the two
guery languages were evaluated on different processor
types. But, the results indicate that GReQL provides the
maintenance programmer with a comparable and — due to
the aility of querying transitive dosures — with even
more avanced query functionality than SQL. Further-
more, GReQL query evaluation times keg up with the
standardized repository query mechanisms of SQL, and
further improvements are expeded, provided that multiple
gueries use the same dready loaded graph.

4.7 Applicability

We have shown that querying large software systems
represented as graphs provides the maintenance program-
mer with various efficient oppatunities for information
retrieval. In this last sedion we briefly discussthe general

necessty and usefulnessof querying to the maintenance of
large multi-language software systems like GEOS.

The primary contribution of the query fadlity in
connection with the GEOS software repasitory is to
suppat the impad analysis of change requests and error
corrections [28]. To trace the source of an error it is
necessry to navigate through the entities comprising a
software system and to identify side dfeds before the
corredion is caried through For instance, if an error
ocaurs in a derived class then it is prudent to examine the
base dasses of that classbefore comingto any conclusion.

The greaest source of errorsin GEOS now are second
level defeds, a side dfed of correding other errors, so
any effort to avoid such urdesired side dfeds is well
worth it. Before implementing a change request it is now
imperative to first come up with a st estimate. The only
way to achieve this is by asesding the impad domain of
the changg, i.e. al classs, interfaces, methods and attrib-
utes, affeded. This can best be done by querying the re-
pository and not by scanning through \erious documents.
Maintenance programmer questions like "What functions
are cdled by the function to be danged and what func-
tions cdl it?' can be axswered by adireded query in sec-
onds. Scanning through gaphicd documents in a CASE
Todl takes hours; scanning through paper documents may
take days. Therefore, utili zing querying technology is par-
ticularly efficient for answering questions regarding side
effeds of changing and further development of legacy
software. Maintenance programmers using GUPRO in the
context of former case studies gated clealy, that diagrams
do not suppat their every day work; but query results in
the form of source mde and tables are much more suited
to suppart their work and give answers to their daily ques-
tions[2].

Once dfeded elements have been identified it is pos-
sible to estimate the rate of change in percentage of the
whole. This percentage is then taken from the Function-
Points or Objed-Points of the total impad domain to
come up with a Function-Point or Objed-point count of
the change. This count can then be mnverted into man-
days via the maintenance productivity tables. The use of
impad analysis to estimate maintenance ®sts, as well as
to identify interseding change requests, has been covered
in previous papers [29]. By means of a query language it
is pasdble to improve the acaragy of the impad analysis
while & the same time reducing the time required.

5. Conclusion

In this paper, we have presented the results of a cae
study, in which the graph-based GUPRO approach and
ANAL/SoftSpeg an approach based on relational data-
bases, were combined. In this way, the benefits of alrealy
existing source ®mde parsers could be cmmbined with the
benefits of GUPRO analyzing and program understanding
techniques in order to reenginee GEOS, a large software
system.

It was down that the graph query language GReQL
provides as much functionality as the standard relational
database query language SQL. In addition, GReQL en-
ables the maintenance programmer to formulate regular
path expressons in order to dedaratively describe aoss
references. GReQL path expressons also suppat first
order logic and transitive dosures, which can be queried
with resped to the underlying conceptual model.

GReQL queries are dficiently evaluated by an
automaton driven cdculation of the path expressons, but
it was shown that most of the time is needed to load the
asciated graph in standard queries. Hence, it till re-
mainsto be evaluated to what extent the time performance
of GReQL can be improved by performing multiple que-
ries whil e loading the graph only once Since, in this case
study, the time measurements to compare the performance
of GReQL and SQL were made on different types of
processors, further studies have to be performed, in order
to find out more exadly which approach is the most effi-
cient.

One benefit of GReQL is the aility to dredly trav-
erse the graph, whereas in SQL different tables might have
to be joined while exeauting the query. This contributes to
the fad that queries which use only one table ae generally
more dficient to exeaute & an SQL query on the database
repasitory, and queries related to many different types of
system elements generally have shorter exeaution times in
GReQL.

6. Acknowledgements

We would like to thank the GUPRO tean for their as-
sistance in performing this case study. And we want to
thank Jirgen Ebert, Bernt Kullbach and Keith Leaham, in
particular, for their valuable comments, which helped im-
proving this paper.

References

[1] B. Bellay, H. Gall: A comparison of four Revese Engi-
neefin Tods, presented at the 4th Working Conference on Re-
verse Engineging (WCRE '97), Amsterdam, The Netherlands,
1997

[2] J. Ebert, R. Gimnich, H. H. Stasch, A. Winter, GUPRO -
Generische Umgebung zum Programmverstehen, Folbad,
1998 Koblenz.

[3] G. Canfora, A. Cimitile, U. de Carlini, A Logic-Based
Approach to Reverse Engineeling Tods Production, IEEE
Transadions on Software Engineaing, 18(12): 10531063 De-
cember 1992

[4] G. Canfora, L. Mancini, M. Tortorella, A Workbench for
Program Comprehension during Software Maintenance, in
Proceadings of the 4th Workshop onProgram Comprehension,
March 2931 1996 Berlin, Germany, pp. 30-39, IEEE Com-
puter Society Press Los Alamitos, 1996

[5] Y.-F. Chen, M. Z. Nishimoto, C.V. Ramamoorthy. The C
Information Abstraction System. |EEE Transadions on Soft-
ware Engineaing, 16 (3), pp. 325334, March 1990

[6] Reverse Engineering Demonstration Projed, 1998
http://www.pathbridge.net/reprojedt/ (10/11/2000, presented at
the 6th Reengineaing Forum, Florence, Italy, March 1998

[71 P. Finnigan, R. Holt, |. Kalas, S. Kerr, K. Kontogiannis,
H. Muédller, J. Mylopodos, S. Perelgut, M. Stanley, and K.
Wong., The Software Bookshelf, IBM Systems JDburnal, Vol.
36, No. 4, pp. 564593 November 1997

[8] R.C.Holt, A. Winter, A. Schirr: GXL — Toward a Stan-
dard Exchange Format, Procealings WCRE 2000 |EEE
Computer Society Press Los Alamitos, pp. 162171, 200Q

[9] P.Hsa A. Gupta, C. Kung, J. Peng, S. Liu, A Study on
the dfea of architedure on the maintainability of objed-
oriented systems in Procealings of |[EEEICSM-95, Opio,
France Computer Society Press Oct. 1995 p. 4.

[10] S. Jarzabek, PQL: A language for spedfying abstract
program views, in Procealings of the 5th European Software
Engineaing Conference (ESEC '95), Springer, Berlin, pp. 324
342, September 1995

[11] S. Jarzabek, T. P. Keanm, Design of Generic Reverse En-
gineering Asdstant Tods, in Procealings of the Seaond Work-
ing Conference on Reverse Engineaing (WCRE '95), IEEE
Computer Society Press pp. 61-70, July 1995

[12] M. Kamp, GReQL: Eine Anfragesprache fuer das
GUPRO-Repository - Sprachbschreibung (Version 1.2),
Fachbericht Informatik 14/98, University of Koblenz-Landau,
Fachbereich Informatik, 1998

[13] R. Krikhaa, Software Architedure Reconstruction,
PhD thesis, University of Amsterdam, 1999

[14] B. Kullbach, A. Winter, Querying as an Enabling Tech-
nology in Software Reengineering, in P. Nesi, C. Verhoef,
Procealings of the 3nd European Conference on Software
Maintenance and Reengineaing, IEEE Computer Society, 1999
Los Alamitos, pp 4250.

[15 B. Kullbad, A. Winter, Visualisieren von Macros durch
Folding, in: J Ebert, B. Kullbach, F. Lehner (Eds)
Fadchberichte Informatik, Universitét Koblenz-Landau, Ger-
many, 2000

[16] C. Lange: GReQL applied to reengineer GEOS, Tech-
nicd Report, to appea, Institute for Software Techndogy, Uni-
versity of Koblenz-Landau.

[17] M. A. Linton, Implementing Relational Views of Pro-
grams. In Procealings of ACM SIGSOFT/SIGPLAN Software
Engineaing Symposium n Pradicd Software Development
Environments, pp. 132- 140, May 1984

[18] H.A. Mdiller, M. A. Orgun, S. R. Tilley, and J. S. Uhl., A
reverse engineering approach to subsystem structure identi-
fication, Journal of Software Maintenance Research and Prac-
tice 5(4), pp. 181-204, December 1993

[19] P. Newcomb, Legacy System Cataloging Facility, in
Procealings of the Second Working Conference on Reverse
Engineaing (WCRE '95), IEEE Computer Society Press pp.
52-60, July 1995

[20] S. E. Sim, M. A. Storey: A Structured Demonstration of
Program Comprehension Tods, Procealings WCRE 200Q
IEEE Computer Society Press Los Alamitos, pp. 184193
2000

[21] J. Singer, T. Lethbridge, N. Vinson: An Examination of
Software Engineeting Work Practices, presented at CASCON
'97, Toronto, Canada, 1997.

[22] H. Sneal: Measurement and Assssnent of complex,
distributed, objed-oriented Application systems in Proceal-
ings of ESCOM-SCOPE Workshop, ESCOM Working Group,
Hercmonceaix, England, April, 1999 pp. 101-109.

[23] H. Sned, T. Dombovari: Comprehending a complex,
distributed, objed-oriented software System - a Report from
the Field, in Procealings of IEEE IWPC-99, IEEE Computer
Society Press Pittsburgh, May, 1999 pp. 218-225.

[24] A. Tateishi, A. E. Wadenstein: Unix Tods for the XFig
Structured Demonstration, Procealings WCRE 200Q Panel
on structured Tool Demo, pp. 203-206, 200Q

[25] V. Hong: Funktionsprototypischer Entwurf und
Evaluation eines windowsbasierten GUPRO-Frontends, Mas-
ter Thesis to appea, Ingtitute for Software Techndogy, Univer-
sity of Koblenz-Landau..

[26] C. H. Wélls, R. Brand. L. Markosian, Customized Tods
for Software Quality Asaurance and Reengineering, in Pro-
cedalings of the Seacond Working Conference on Reverse Engi-
neeging (WCRE '95), IEEE Computer Society Press pp. 71-77,
July 1995

[27] H. Zuse: Software complexity: measures and methods,
Berlin, New York, W. de Gruyter, 1991

[28] M. Fyson, C. Boldyreff: Using Application Under-
standing to support Impact Analysis, Journal of Software
Maintenance, Vol. 10, No. 2, March 1998 pp. 93-110.

[29] H. Sned: Estimating the Costs of Software Mainte-
nance Tasks, in Procealings of International Conference on
Software Maintenance, |IEEE Press Opio, France, Oct. 1995
pp.168181

