
Compar ing Graph-based Program Comprehension Tools
to Relational Database-based Tools

 Carola Lange1 Harr y M. Sneed Andreas Winter
 Institute for Software Technology Case Consult GmbH Institute for Software Technology
 University of Koblenz-Landau Flachstraße 13 University of Koblenz-Landau
 Rheinau 1, D-56075 Koblenz D-65197 Wiesbaden Rheinau 1, D-56075 Koblenz
 Germany Germany Germany
 clange@uni-koblenz.de harry.sneed@caseconsult.com winter@uni-koblenz.de

1 Currently on a scholarship program at the Artificial Intell igence Center
of The University of Georgia (August 2000 − May 2001).

Abstract
In this paper we compare the experiences of applying the
graph-based GUPRO approach to experiences in apply-
ing ANAL/SoftSpec − an approach based on relational
databases. We present the results of a case study in which
GUPRO has been applied to a multi-language software
system for stock trading (GEOS). Comparing the results
of the case study with experiences of applying
ANAL/SoftSpec to GEOS we show that the graph-
oriented approach enables an efficient way of source
code analysis and program understanding.

Keywords: comparison of program comprehension tools,
relational database repository, graph-based repository,
querying repositories.

1. Introduction

During the last few years lots of program comprehen-
sion tools have been developed in research as well as in
industry. To show their usefulness, it is apparently neces-
sary to apply these tools to various maintenance problems
from the field and evaluate them in real use cases. Com-
paring the application of different tools to equal or similar
tasks leads to a better consideration of the pros and cons
of the underlying tool approaches. Therewith, knowledge
about their usabilit y in simpli fying the task of understand-
ing complex software systems can be gained. Further
steps in adapting the tools to the demands of the mainte-
nance programmers can be made, facilit ating an ongoing
improvement of both approaches and tools.

Bellay and Gall presented a comparison of four differ-
ent Reverse Engineering Tools (Refine/C, Imagix 4D,
Rigi, Sniff+) on WCRE 1997 [1]. The main goal was to
investigate the differences between the tools with respect

to the generation of graphical reports. Based on 80
assessment criteria Bellay and Gall conclude that it is
diff icult to analyze embedded systems with current re-
verse engineering tools and that in particular the graphical
views and layouts need considerable improvement. They
also state that mixed-language support is a necessity for
real-world applications.

Elli ot Chikofsky organized a Reverse Engineering
Demonstration Project [6]. In a cooperative study among
commercial and non-commercial research groups the re-
sults and value of their methods and tools in analyzing the
WELTAB III Election System were demonstrated.

Susan Elli ott Sim and Margaret-Anne Storey organ-
ized two consecutively structured tool demonstrations at
CASCON 1999 and WCRE 2000 [20]. Several teams
were given a set of architectural analysis and maintenance
tasks to perform on a common subject system. This com-
parison provided the tool developers with insights into
their own tools and gave them the opportunity to view
other tools, their abilit y and performance to provide sup-
port for equal tasks. They also point out that tool evalua-
tion is necessary to enhance the technology transfer and
widen the acceptance of program comprehension tools in
industry.

In contrast to Bellay and Gall 's study, which empha-
sizes tool visualization, we focus on comparing different
repository structures. Source code analysis can be per-
formed either text-based or repository-based. Both types
of approaches were tested and evaluated on the structured
tool demonstrations. As an example, for textual based
analysis, the simple editor faciliti es and basic UNIX-tools
like grep and find were used. The experiences in applying
Unix tools to analyze XFig are described in [24]. Soft-
ware development teams, which use repository structures
based on graphs or binary relations representing source
code artifacts, also participated in the demonstration (PBS

(Portable Bookshelf) [7] and Rigi [18]). The graphical
code browsing and program comprehension tool TkSee
[21], which uses repository structures based on relational
databases was evaluated during the CASCON 1999 work-
shop. The Relation Partition Algebra (RPA) described by
[13] is another repository-based approach using binary
relations for data representation. Relational database
management systems provide the underlying repository
structure for further program comprehension tools. An
approach based on relational databases was first intro-
duced by Linton in [17]; yet, his results regarding re-
sponse time performance were unsatisfactory using
RDBMS available in the early 1980s. More recent
RDBMS based approaches are described in [5] and [24].
Other repository structures are based on logic oriented
data representations [3], [11], [4], LISP Images [19], syn-
tax trees [26], or hybrid knowledge bases [10].

This paper succeeds [24], which describes the results
of applying the CPPANAL source code analyzer to the
sources of the stockbroker trading system GEOS. Their
approach is based on relational databases. Here, we pre-
sent the results of applying the graph-based GUPRO ap-
proach [2] to GEOS. Thus, this paper compares the appli-
cation of a graph-based approach to program comprehen-
sion with a relational database approach. It also describes
the ways in which two different tool sets can be combined
into an interoperable reengineering workbench.

The subsequent parts are organized as follows: Sec-
tion 2 gives a characterization of the reengineering project
at the stock broker in Vienna and first insights into the
maintenance tasks and inquiries of the maintenance pro-
grammers. The approach pursued in this case study and
the tools used are described in section 3. Finally section 4
gives insights about the actual experiences that were made
by applying the tools.

2. Reverse Engineering of GEOS

GEOS (Global Entity Offering System) is a stock trad-
ing application system developed in Vienna as a standard
software package to be sold to banks. It has been under
development for five years. There are currently four
banks in Austria and two banks in Germany using the
system.

GEOS consists of 8 subsystems plus a Java gateway to
the internet. There are different subsystems for order
processing, conditions management, depot administration,
portfolio management, risk management, trading, clear-
ing, and investment management. Each of these systems
has a C++ frontend to serve the distributed graphical user
interfaces and a C backend to process the centralized rela-
tional databases. The Java Internet gateway offers a by-
pass to the C backend components via a wrapper layer.

Analyzing such multi -language systems naturally requires
an integrated examination of all subsystems.

The system is constantly growing. Currently it has
6,279 source files and 2,364,652 lines of code [22]. Sys-
tems of this size and complexity are inherently diff icult to
document, because of the great number of entities and the
even greater number of relationships. The nature of ob-
ject-oriented software also leads to a greater number of
interactions between separately compiled modules since
methods in one class refer to methods in another.

When developing GEOS there was no CASE tool
used to document the design. The code was produced
based on the requirement specification in a semi-formal
functional specification language, which does not provide
any information about the technical architecture. Thus,
the only descriptions of the programs are the sources
themselves and the comments contained therein.

For this reason, it was decided to use reverse engi-
neering tools to recapture design information from multi
language sources and to store it in a software repository.
The key technology used here is static analysis. Through
static analysis, it is possible to generate entity and rela-
tionship tables from each source member, depicting vari-
able references, database accesses, file usage, class inheri-
tance and other relevant cross references. These interme-
diate cross reference tables for each module are then
processed to populate the repository in a relational data-
base [23].

There are currently more than 1600 components, 3000
modules, 2200 classes, 30,000 interfaces, 34,000 func-
tions, 290,000 function calls, 192,341 data declarations
and 895,110 data references. This gives an idea of the
magnitude of the documentation problem. Maintainers
want to have specific answers to specific questions [9].
Unfortunately the set of questions a maintenance pro-
grammer will ask, in order to comprehend software sys-
tems, cannot be foreseen. Thus, program comprehension
tools have to provide a powerful query mechanism to in-
vestigate software systems [2]. Regarding the architectural
level, these questions are classifiable into five main types:
relations between modules and functions, include rela-
tionships, call relationships, inheritance relationships and
metrics. Here are some examples of maintainers' specific
questions:

• How does a certain module interact with other ele-
ments in the system and which functions belong to a
particular module?

• Which modules include a certain header file?
• Which function calls a particular function and which

function is called by a certain function?
• Which classes specialize a certain (super) class?

• How many other functions are called by a particular
function, or what is the average of called functions of
a particular module?

Scanning through complex diagrams, whether on pa-
per or on a graphical user interface, is no eff icient way to
comprehend large software systems. Directly querying the
data repository has been shown to be an enabling technol-
ogy in this field [14]. Standard SQL queries have already
been performed on the database repository [23]. The
GUPRO (Generic Unit for Program Understanding, [2])
approach is now being used, while higher performance
due to the use of graph-based query technology is ex-
pected. Furthermore it should be easier to formulate com-
plex queries such as querying of transitive closures.

3. Approach and Tools

The two approaches compared in this paper follow the
Extract-Abstract-View metaphor, where source code is
extracted into an analyzable representation. Abstractions
are calculated by suited analysis features and queries,
which are visualized afterwards. The data that is extracted
from code artifacts is defined in a conceptual model. This
also controls the abstraction in the way that certain ab-
stractions of the data can be queried according to the con-
ceptual model.

The overall approach is depicted in figure 1. Tables
were extracted from the GEOS source code with respect
to a conceptual model (extract). The main tools responsi-
ble for the extract process are a parser component
(ANAL) and a component that creates the relational data-

base repository (SoftSpec). These tools exist for JAVA,
C/C++, and IDL source code. The repository can be que-
ried (abstract) with the SoftSpec component RepoView
using standard SQL statements. It is possible to select
relations from a single table via a SELECT..FROM..
WHERE statement or to make a join of several tables by
means of a nested SELECT statement. The results of the
query are displayed (view) in an Excel type table where
they can be viewed or printed out.

By transforming the database repository into a graph,
whose vertices and edges depend on the underlying con-
ceptual model, further abstractions can be performed.
Transforming contents of relational databases into graphs
is straightforward; the database is read out into a graph
structure according to the conceptual model.

The GUPRO approach provides an adaptable and
extensible workbench for program analysis. GUPRO is
strongly based on graph technology. Source code is
parsed into graph structures, which are accessible by
graph algorithms and a general graph query language
GReQL [14]. With GReQL graphs are queried (abstract)
according to entities (nodes) and associations (edges)
represented in the conceptual model. GReQL query re-
sults can be viewed in ASCII - or HTML-tables (view).
GUPRO additionally provides source code browsers [25]
with scaleable representations of source code through the
use of folding techniques. Folding is a technique that can
be used for structuring text documents. In GUPRO, fold-
ing is used to represent the replacements of the C pre-
processor and other user defined replacements [15]. Of

Conceptual
model

Abstract:
GUPRO
(GReQL)

Results
Graph

Repository

Extract:
ANAL,

SoftSpec

Relational
Database

Abstract:
RepoView

(SQL)

Source
 code Results

Converter View

Figure 1: Approach

course, the representation of results in tables and − in
terms of source code − in browsers is integrated.

In this paper we focus on the process of abstraction
through querying relational databases or graph-based re-
positories. In the following section we sketch the underly-
ing conceptual model, which provides combining
ANAL/SoftSpec and GUPRO. Afterwards, the extract,
the abstract, and the view components in both approaches
are described in further detail .

3.1 Conceptual Model

The authors developed the underlying conceptual
model through discussions in joint meetings. It describes
the amount of data, which is exchanged between
ANAL/SoftSpec and GUPRO. The conceptual model,
depicted in the UML class diagram in figure 2, defines the
common repository structure for analyzing GEOS on an
architectural level. This conceptual model defines both,
the relational data base structure used in ANAL/SoftSpec
and the graph-based structure used in GUPRO. The con-
ceptual model represents the co-operation of modules,

classes, and methods in order to enable the analysis of
associations between different entities.

The GEOS system is separated into various compo-
nents that contain multiple modules. For external docu-
mentation components are associated to further docu-
ments, accessible by URLs. In the case of C++ and Java
modules these are further decomposed into classes, which
are collections of methods and attributes.

For non-object oriented languages, functional compo-
nents (here also called methods) and attributes are di-
rectly associated with modules. The databases accessed
by GEOS modules are represented by their tables, includ-
ing the herein referenced attributes. The associations ren-
der an include hierarchy (includes) between modules, a
class hierarchy (isSubclassOf) between classes, and the
call relations (calls) between methods.

3.2 Extract: Generating the GEOS repository

In order to extract information from GEOS source
code, first, a series of extraction tools (ANAL) is applied,
which parse the code, extract the relevant information,

Figure 2: Conceptual Model

and create an intermediate program description. In a sec-
ond step, further tools (SoftSpec) process this intermedi-
ate description to create the actual relational databases.
The resulting repository database consists of 18 binary
relationship tables plus a document text table containing
module structures and comments, for the several language
systems (C, C++, JAVA, RDBMS).

In this case study we have combined two separate tool
approaches. Therefore, some kind of transformer was nec-
essary to map the different data structures. For this reason
the relational database was converted to the standard ex-
change format GXL [8], which can be used as input for
the GUPRO tools. In this way, the benefits of already ex-
isting source code parsers could be combined with the
benefits of GUPRO analyzing and program understanding
techniques.

GEOS consists of 8 subsystems. The examples in this
paper are taken from the investment banking service
subsystem Nostro that is evenly divided between C++ and
C. The resulting database consists of 18 tables with com-
bined 28,890 rows. The graph, representing the tables of
the subsystem Nostro, has a size of 795 KB, with 8223
nodes and 20,815 edges.

3.3 Abstract

Once the database repository has been loaded by the
SoftSpec tool, there are two possible ways to use it: the
adhoc query of cross references, and the generation of
standard system documents. These documents depict the
different hierarchies and networks from the repository,
e.g. function call trees, class inheritance trees, and func-
tion sequence diagrams.

Querying the GEOS repository is accomplished by
RepoView using any standard SQL SELECT statement
supported by the IBM Universal DB2 database system.
For example, the database repository contains a table
Func_Plus, which relates to each function (Func_Name)
all called functions (Target_Name). A typical SQL query
(CheckErrOut.sql), which lists all functions that invoke
the function 'CheckErrOut', is the following:

SELECT Func_Name
FROM Func_Plus
WHERE Target_ Name =“CheckErrO ut“

SQL also provides further queries, which join several ta-
bles. A detailed description of experiences in querying the
GEOS repository with SQL can be found in [23].

GUPRO is based on graph technology, and
adaptabilit y is given by graph-based conceptual modeling.
In contrast to object-oriented modeling, where associa-
tions are treated as references from one association end to
the other, and which can only be navigated in one direc-
tion, in graph-based modeling, edges are considered as
first-class citizens. Thus, graph-based modeling provides

navigation of associations in both directions − in and
against the orientation of an edge type. Embedding these
features into graph query-languages allows powerful navi-
gation through graph structures. Here the graph represen-
tation of the tables was queried with the query language
GReQL, a language especially suited to graph querying.
The FWR (FROM WITH REPORT) expression is the
most important language element. Within the FROM clause
variables are declared; in the WITH clause the set of pos-
sible variables can be restricted by first order logic predi-
cates. They can also contain regular path expressions in-
cluding (reflexive) transitive closures. The REPORT
clause specifies the representation of query results [12]
[14].

The following query (CheckErrOut.grq) reports − just
as the above mentioned SQL query CheckErrOut.sql − the
names of all functions, which are directly calli ng the func-
tion with name 'CheckErrOut'. The types of nodes and
edges used in the GReQL query refer directly to those
depicted in figure 2.

FROM
callee:V{Method},caller:V{Method}
WITH callee.name = 'CheckErrOut'
 AND callee < -- {calls} caller
REPORT caller.name
END

The FROM part declares two variables, caller and
call ee, of node type Method . The WITH part restricts
the possible assignments to callee to those methods
with a name attribute equal to 'CheckErrOut'. Further-
more, the possible assignments to calle r are restricted
to those linked to callee by an outgoing edge of type
'calls' in the second part of the WITH clause. The
REPORT part specifies to report the value for the attribute
name of each method which fulfill s the WITH clause.

GreQL is an expression language; predicates can be
formulated using first order logic and may also contain
path expressions to describe regular path structures, such
as sequences, alternatives and iterations, also including
reflexive and transitive closures. Queries are eff iciently
evaluated by an automaton driven calculation of the path
expressions. The challenge of applying GReQL to a real-
world reengineering case was to evaluate how these means
can be used in order to improve program understanding. A
further reason for applying GReQL to this case was to see
whether the graph-based approach could keep up with the
original approach of reengineering GEOS by using rela-
tional databases to represent entities and relations of the
system.

3.4 View

The original viewing aspects of the SoftSpec tools
were limited to the table rows as they are stored. The user

gets the SQL column name at the top of each column and,
thereunder, a list of all selected values in that column or-
dered by primary key. If a value is missing in a row, the
column entry for that row is empty.

In this case study, GReQL queries were evaluated with
the command line GReQL tool CLG. CLG supports three
different output formats of the query results: ASCII tables,
HTML tables and comma-separated format. A more user-
friendly graphical user interface in C++ for querying and
browsing graphs as well as supporting loading, editing and
saving of queries and their results is currently under con-
struction [25].

Figure 3 depicts the HTML result of the formerly men-
tioned GReQL query CheckErrOut.grq, which lists the
names of all methods that are directly calli ng CheckEr-
rOut.

4. Experiences in applying GReQL

In this section we describe the actual case study − the
kinds of queries that were performed in order to answer
the maintenance programmer’s questions. In addition, new
insights into the applicabilit y of GReQL with respect to
time performance and mightiness of the language con-
structs are presented.

As introduced in section 2, the queries performed on
the Nostro graph are classifiable into five main types: re-
lations between modules and functions, include relation-
ships, call relationships, inheritance relationships, and
metrics. See [16] for a detailed description of all per-
formed queries and their results. Each type of query, along

with a typical example, is described in subsections 4.1 to
4.5. Section 4.6 gives an overview of the time perform-
ance of GReQL in comparison to similar SQL queries.
Finally, the applicabilit y of the query technique in real-
world use cases to gain a deeper understanding of large
software systems is discussed in section 4.7.

4.1 Module −− Function relationships

The maintenance programmer first has to gain an over-
view of the modules and their methods in order to have an
overview of the whole system. Queries such as the follow-
ing can be classified as queries concerning module-
function relationships:

• Which functions belong to a particular module?
• Which modules contain functions being called by a

particular function?
• Which modules use a particular function?

For example, the Nostro system contains a central
module which can be recognized by its attribute id = 0. In
order to discover which other elements of the system are
related to this specific module, you simply traverse all
incoming and outgoing edges of this module node and list
the corresponding nodes. The following GReQL-query
(listNeighbors.grq) reports the name of every node that
has a direct link to the module with id = 0:

FROM m:V{Module}
WITH m.id = 0
REPORT
 FROM v:V{}
 WITH v < - >{} m
 REPORT v.name
 END
END

The first FROM-WITH part declares the variable m of
type Module and restricts its assignments to those module
nodes with attribute id = 0. The nested FROM-WITH-
REPORT clause specifies to report the names of all nodes
that have a direct relation to m. The query result of list-
Neighbors.grq shows that the module with id = 0 is di-
rectly associated to 1409 other elements of the system, i.e.
to 18.3 % of all system elements.

4.2 Include relationships

The Nostro system contains about 600 modules.
Hence, keeping track of the include relationships between
these modules is an important aspect of understanding
how the individual parts of the software system work to-
gether. Typical queries about include relationships are the
following:

• Which modules are included by a particular module?

Figure 3: GReQL query result

• Which modules include a particular module?
• Which modules are included by the header files of a

particular module?

For example, the attributes id, name and type of each
module that includes the header file 'nndnostr' are reported
by the following query (includedByMod.grq):

FROM inc:V{Module}
WITH inc.name = 'nndnostr'
REPORT

 FROM m:V{Module}
 WITH inc < -- {includes} m
 REPORT m.id, m.name, m.type
 END

END

The outer FWR clause declares a variable inc and re-
stricts its assignments to module nodes with name
'nndnostr'. The inner FWR clause declares a second vari-
able of node type module and reports the attribute values
of those modules that include inc . The result of includ-
edByMod.grq lists 43 different modules that include mod-
ule 'nndnostr'.

4.3 Call relationships

More than 3000 functions belong to the approximately
600 modules of the Nostro system. Queries about which
function is invoked by a particular function, and which
function calls a particular function help understanding
which parts of the system will be influenced by or depend
on changes in the functionality of certain procedures. As
an example, the following GReQL query lists for each
function all functions that are invoked by the function
(directlyCalledFuncs.grq):

FROM caller:V{Method}
REPORT caller.name,

 FROM callee:V{Method}
 WITH caller -- >{calls} callee
 REPORT callee.name
 END

END

The result of directlyCalledFuncs.grq lists, in about 7075
lines, the name of each function (caller) together with
the set of functions (callee) which are directly called by
caller .

GReQL also enables the user to query transitive clo-
sures. The following query (callFunctions.grq) applies the
'* ' operator to list for each function all functions that are
called directly or called indirectly by a called function.

FROM caller:V{Method}
REPORT caller.name,

 FROM callee:V{Method}
 WITH caller -- >{calls}* callee
 REPORT callee.name
 END

END

The result of callFunctions.grq contains about 150,000
rows, listing for each function caller every function
whose change could have an impact on caller . Since
edges can be navigated in both directions the direction of
the arrow can be changed in order to enumerate for each
function f all functions whose change might have an im-
pact on f.

The abilit y of GReQL to query transitive closures is
one of its significant advantages in comparison to SQL.
Even though newer SQL standards support the querying
of transitive closures, having to process a non-predictable
amount of joint operations limits the possible time per-
formance. The processing of transitive closures in GReQL
can be performed eff iciently by directly traversing the
graph structure.

4.4 Inheritance relationships

In understanding object-oriented programs, new diff i-
culties arise due to the possibilit y of applying (multiple)
inheritance and polymorphism. Queries about generaliza-
tion or specialization of a particular class in the system are
classified as queries about inheritance relationships. Typi-
cal queries are as follows:

• Which classes are specializations of a particular
class?

• Which classes are super classes of a particular class
on a distinct level of generalization?

• Which classes are affected from multiple inheritance?

The following GReQL query (highestSuperclass.grq)
reports the 'highest' super class of each class, i.e. it reports
the name of each class and the name of the most general
super class of that class.

FROM c,super : V{Class}
WITH c -- >{isSubclassOf}* super
AND
outDegree{isSubclassOf}(super) = 0
REPORT c.name, super.name
END

The FROM part declares two variables, c and super , of
type class. The WITH part restricts the possible assign-
ments such that c has to be a subclass of super on arbi-
trary level and that super must not be a subclass of any
other class. The REPORT part specifies to report the
name of class c and the name of its highest super class.
The result of highestSuperclass.grq lists more than 2000
class name pairs.

4.5 Metr ics

In order to gain insights into the size of the system and
the proportion of the different types, various kinds of met-
rics were calculated. They can be classified into measure-

ments counting specific types of nodes or edges, queries
calculating the number of edges adjacent to the different
types of nodes and metrics calculating averages. The fol-
lowing are queries typically classified as metrics:

• What is the number of components, modules, classes,
methods or attributes?

• How many function calls are implemented in the sys-
tem, a particular module, class or method?

• What is the average number of functions called by
each function?

• What is the average number of classes that belong to
a module?

These are only a small selection of possible metrics; a
larger variety of software metrics is described e.g. in [27].
To give a metric example in GReQL, the following query
(avgCalledFunc.grq) returns the average number of func-
tions called by each function.

avg(
FROM m:V{Method}
REPORT outDegree{calls}(m)
END)

For the Nostro subsystem this query reports that, on aver-
age, 2.34 functions are called by each function.

4.6 Performance

The time performance of GReQL queries was meas-
ured and compared to the performance of similar SQL
queries running on the corresponding relational databases.
In order to analyze the time performance for each task of
the command line GReQL tool CLG, four different times
were measured: the duration to load the graph, the time to
evaluate the GReQL query and the times to format and to
print the output file. Loading the graph file (795 KB) with
the CLG tool on a Pentium III (600 MHz, 256 MB RAM)
takes 3.02 seconds. For standard queries it takes about 4
seconds to process the whole query, i.e. to load the graph,
evaluate the query and print the output file. Hence, most
of the execution time is "wasted" by reloading the graph
for each query.

Table 1 lists the time needed to evaluate the query and
the total time needed to perform the graph loading, query
evaluation and output formatting for a series of typical
GReQL queries. The respective times for SQL queries are
also listed, measured in 0.5 seconds and performed on an
AMD K6 PC with 300 MHz and 128 MB RAM.

For example, retrieving all methods that are directly
calling function 'CheckErrOut' by a GReQL-query takes in
total 3.46 seconds. Running the corresponding SQL query
on the Nostro tables takes about 4 seconds. Comparing the
total times of each GReQL and SQL query it can be seen
that the query execution times are only slightly different.
GReQL has an advantage in being able to traverse outgo-

ing edges of any type, e.g. for listNeighbors.grq, whereas
several tables have to be looked up and joined to retrieve
this information from the database repository.

Table 1: Time performance comparison

 GReQL SQL

Query
total time
(sec)

evaluation
time (sec)

total time
(sec)

li stNeighbours 3.510 0.110 4
directlyCalledFuncs 4.830 0.880 3.5
callFunctions 21.200 10.550 −
cntComponents 3.300 0.0 4.5
cntModules 3.300 0.0 3.5
cntClasses 3.290 0.0 3.5
cntFunctions 3.300 0.060 4
cntAttributes 3.360 0.060 3.5
CheckErrOut 3.460 0.110 4

In order to perform the SQL query directlyCalled-
Funcs, only the Func_Plus table has to be searched. But in
GUPRO the whole graph has to be loaded. If multiple
queries used the same already loaded graph, 3 seconds
could be saved for the execution of each GReQL query
(assuming the current Nostro graph is used). Then the
much shorter GReQL evaluation times could be compared
to the performance of SQL on the corresponding rela-
tional databases. This would result in a significant differ-
ence in the time performance, which can easily be seen
from the particular entries in table 1.

The GReQL query callFunctions.grq as introduced in
section 4.3 calculates the transitive closure of called func-
tions for each function of the Nostro system. Since, the
SQL standard, used in RepoView, does not support query-
ing transitive closures no corresponding SQL query could
be performed on the database repository.

We are aware of the fact that these measurements and
their comparison can only be tentative, because the two
query languages were evaluated on different processor
types. But, the results indicate that GReQL provides the
maintenance programmer with a comparable and − due to
the abilit y of querying transitive closures − with even
more advanced query functionality than SQL. Further-
more, GReQL query evaluation times keep up with the
standardized repository query mechanisms of SQL, and
further improvements are expected, provided that multiple
queries use the same already loaded graph.

4.7 Applicabili ty

We have shown that querying large software systems
represented as graphs provides the maintenance program-
mer with various eff icient opportunities for information
retrieval. In this last section we briefly discuss the general

necessity and usefulness of querying to the maintenance of
large multi -language software systems like GEOS.

The primary contribution of the query facilit y in
connection with the GEOS software repository is to
support the impact analysis of change requests and error
corrections [28]. To trace the source of an error it is
necessary to navigate through the entities comprising a
software system and to identify side effects before the
correction is carried through. For instance, if an error
occurs in a derived class, then it is prudent to examine the
base classes of that class before coming to any conclusion.

The greatest source of errors in GEOS now are second
level defects, a side effect of correcting other errors, so
any effort to avoid such undesired side effects is well
worth it. Before implementing a change request it is now
imperative to first come up with a cost estimate. The only
way to achieve this is by assessing the impact domain of
the change, i.e. all classes, interfaces, methods and attrib-
utes, affected. This can best be done by querying the re-
pository and not by scanning through various documents.
Maintenance programmer questions like "What functions
are called by the function to be changed and what func-
tions call it ?" can be answered by a directed query in sec-
onds. Scanning through graphical documents in a CASE
Tool takes hours; scanning through paper documents may
take days. Therefore, utili zing querying technology is par-
ticularly eff icient for answering questions regarding side
effects of changing and further development of legacy
software. Maintenance programmers using GUPRO in the
context of former case studies stated clearly, that diagrams
do not support their every day work; but query results in
the form of source code and tables are much more suited
to support their work and give answers to their daily ques-
tions [2].

Once affected elements have been identified it is pos-
sible to estimate the rate of change in percentage of the
whole. This percentage is then taken from the Function-
Points or Object-Points of the total impact domain to
come up with a Function-Point or Object-point count of
the change. This count can then be converted into man-
days via the maintenance productivity tables. The use of
impact analysis to estimate maintenance costs, as well as
to identify intersecting change requests, has been covered
in previous papers [29]. By means of a query language it
is possible to improve the accuracy of the impact analysis
while at the same time reducing the time required.

5. Conclusion

In this paper, we have presented the results of a case
study, in which the graph-based GUPRO approach and
ANAL/SoftSpec, an approach based on relational data-
bases, were combined. In this way, the benefits of already
existing source code parsers could be combined with the
benefits of GUPRO analyzing and program understanding
techniques in order to reengineer GEOS, a large software
system.

It was shown that the graph query language GReQL
provides as much functionality as the standard relational
database query language SQL. In addition, GReQL en-
ables the maintenance programmer to formulate regular
path expressions in order to declaratively describe cross
references. GReQL path expressions also support first
order logic and transitive closures, which can be queried
with respect to the underlying conceptual model.

GReQL queries are eff iciently evaluated by an
automaton driven calculation of the path expressions, but
it was shown that most of the time is needed to load the
associated graph in standard queries. Hence, it still re-
mains to be evaluated to what extent the time performance
of GReQL can be improved by performing multiple que-
ries while loading the graph only once. Since, in this case
study, the time measurements to compare the performance
of GReQL and SQL were made on different types of
processors, further studies have to be performed, in order
to find out more exactly which approach is the most eff i-
cient.

One benefit of GReQL is the abilit y to directly trav-
erse the graph, whereas in SQL different tables might have
to be joined while executing the query. This contributes to
the fact that queries which use only one table are generally
more eff icient to execute as an SQL query on the database
repository, and queries related to many different types of
system elements generally have shorter execution times in
GReQL.

6. Acknowledgements

We would like to thank the GUPRO team for their as-
sistance in performing this case study. And we want to
thank Jürgen Ebert, Bernt Kullbach and Keith Leatham, in
particular, for their valuable comments, which helped im-
proving this paper.

References

[1] B. Bellay, H. Gall: A compar ison of four Revese Engi-
neerin Tools, presented at the 4th Working Conference on Re-
verse Engineering (WCRE '97), Amsterdam, The Netherlands,
1997.

[2] J. Ebert, R. Gimnich, H. H. Stasch, A. Winter, GUPRO -
Generische Umgebung zum Programmverstehen, Fölbach,
1998, Koblenz.

[3] G. Canfora, A. Cimitil e, U. de Carlini, A Logic-Based
Approach to Reverse Engineering Tools Production, IEEE
Transactions on Software Engineering, 18(12): 1053-1063, De-
cember 1992.

[4] G. Canfora, L. Mancini, M. Tortorella, A Workbench for
Program Comprehension dur ing Software Maintenance, in
Proceedings of the 4th Workshop on Program Comprehension,
March 29-31 1996, Berlin, Germany, pp. 30-39, IEEE Com-
puter Society Press, Los Alamitos, 1996.

[5] Y.-F. Chen, M. Z. Nishimoto, C.V. Ramamoorthy. The C
Information Abstraction System. IEEE Transactions on Soft-
ware Engineering, 16 (3), pp. 325-334, March 1990.

[6] Reverse Engineering Demonstration Project, 1998,
http://www.pathbridge.net/reproject/ (10/11/2000), presented at
the 6th Reengineering Forum, Florence, Italy, March 1998.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and K.
Wong., The Software Bookshelf, IBM Systems Journal, Vol.
36, No. 4, pp. 564-593, November 1997.

[8] R. C. Holt, A. Winter, A. Schürr: GXL – Toward a Stan-
dard Exchange Format, Proceedings WCRE 2000, IEEE
Computer Society Press, Los Alamitos, pp. 162-171, 2000.

[9] P. Hsia, A. Gupta., C. Kung, J. Peng, S. Liu, A Study on
the effect of architecture on the maintainabili ty of object-
or iented systems in Proceedings of IEEE-ICSM-95, Opio,
France, Computer Society Press, Oct. 1995, p. 4.

[10] S. Jarzabek, PQL: A language for specifying abstract
program views, in Proceedings of the 5th European Software
Engineering Conference (ESEC '95), Springer, Berlin, pp. 324-
342, September 1995.

[11] S. Jarzabek, T. P. Keam, Design of Generic Reverse En-
gineering Assistant Tools, in Proceedings of the Second Work-
ing Conference on Reverse Engineering (WCRE '95), IEEE
Computer Society Press, pp. 61-70, July 1995.

[12] M. Kamp, GReQL: Eine Anfragesprache fuer das
GUPRO-Repository - Sprachbschreibung (Version 1.2),
Fachbericht Informatik 14/98, University of Koblenz-Landau,
Fachbereich Informatik, 1998.

[13] R. Krikhaar, Software Architecture Reconstruction,
PhD thesis, University of Amsterdam, 1999.

[14] B. Kullbach, A. Winter, Querying as an Enabling Tech-
nology in Software Reengineering, in P. Nesi, C. Verhoef,
Proceedings of the 3nd European Conference on Software
Maintenance and Reengineering, IEEE Computer Society, 1999,
Los Alamitos, pp 42-50.

[15] B. Kullbach, A. Winter, Visualisieren von Macros durch
Folding, in: J. Ebert, B. Kullbach, F. Lehner (Eds.)
Fachberichte Informatik, Universität Koblenz-Landau, Ger-
many, 2000.

[16] C. Lange: GReQL applied to reengineer GEOS, Tech-
nical Report, to appear, Institute for Software Technology, Uni-
versity of Koblenz-Landau.

[17] M. A. Linton, Implementing Relational Views of Pro-
grams. In Proceedings of ACM SIGSOFT/SIGPLAN Software
Engineering Symposium n Practical Software Development
Environments, pp. 132 - 140, May 1984.

[18] H. A. Müller, M. A. Orgun, S. R. Till ey, and J. S. Uhl., A
reverse engineering approach to subsystem structure identi-
fication, Journal of Software Maintenance: Research and Prac-
tice, 5(4), pp. 181-204, December 1993.

[19] P. Newcomb, Legacy System Cataloging Facili ty, in
Proceedings of the Second Working Conference on Reverse
Engineering (WCRE '95), IEEE Computer Society Press, pp.
52-60, July 1995.

[20] S. E. Sim, M. A. Storey: A Structured Demonstration of
Program Comprehension Tools, Proceedings WCRE 2000,
IEEE Computer Society Press, Los Alamitos, pp. 184-193,
2000.

[21] J. Singer, T. Lethbridge, N. Vinson: An Examination of
Software Engineering Work Practices, presented at CASCON
'97, Toronto, Canada, 1997.

[22] H. Sneed: Measurement and Assessment of complex,
distr ibuted, object-or iented Application systems in Proceed-
ings of ESCOM-SCOPE Workshop, ESCOM Working Group,
Hercmonceaux, England, April , 1999, pp. 101–109.

[23] H. Sneed, T. Dombovari: Comprehending a complex,
distr ibuted, object-or iented software System - a Report from
the Field, in Proceedings of IEEE- IWPC-99, IEEE Computer
Society Press, Pittsburgh, May, 1999, pp. 218–225.

[24] A. Tateishi, A. E. Walenstein: Unix Tools for the XFig
Structured Demonstration, Proceedings WCRE 2000, Panel
on structured Tool Demo, pp. 203–206, 2000.

[25] V. Hong: Funktionsprototypischer Entwurf und
Evaluation eines windowsbasierten GUPRO-Frontends, Mas-
ter Thesis to appear, Institute for Software Technology, Univer-
sity of Koblenz-Landau..

[26] C. H. Wells, R. Brand. L. Markosian, Customized Tools
for Software Quali ty Assurance and Reengineering, in Pro-
ceedings of the Second Working Conference on Reverse Engi-
neering (WCRE '95), IEEE Computer Society Press, pp. 71-77,
July 1995.

[27] H. Zuse: Software complexity: measures and methods,
Berlin, New York, W. de Gruyter, 1991.

[28] M. Fyson, C. Boldyreff : Using Application Under-
standing to support Impact Analysis, Journal of Software
Maintenance, Vol. 10, No. 2, March 1998, pp. 93-110.

[29] H. Sneed: Estimating the Costs of Software Mainte-
nance Tasks, in Proceedings of International Conference on
Software Maintenance, IEEE Press, Opio, France, Oct. 1995,
pp.168-181.

