
Meta Modelling Tasks –
Prototypical Language Features

Jürgen Jung and Lutz Kirchner
Chair of Information Systems and Enterprise Modelling

University of Duisburg-Essen
45141 Essen, Germany

This document contains several small tasks. Each of these tasks represents a
prototypical feature of modelling languages. The problems given in the tasks should
be implemented using a meta-modelling tool. The document at hand is structured as
follows:

1 Static Structure of Diagrams
a) Attributes
b) Relationships
c) Constraints between relationships
d) Integrity constraints
e) Bipartite graphs
f) Well-formed graphs

2 Visualisation of nodes and relationships
a) Geometrical figures
b) Complex graphics
c) Complex graphics at relationship ends
d) Semantics by different routing of lines

3 References
a) Links between a model element and another model
b) Links between a part of a model element and another model
c) External links

4 Optional Aspects

It is not important to implement all these language features. Existing modelling
language implementations should be reused. The focus is on showing how the tasks
can be solved by using a given meta-modelling tool.

1 Static Structure of Diagrams
The static structure includes language features like entity types, relationship types,
attributes and constraints on static elements.

a) Attributes
Description: Properties of static elements have to be represented. Such properties
encompass its name and a set of attributes. An attribute consists at least of a locally
unique name and a type description.

Task: Implement a model element representing a UML class with attributes. Every
attribute has a locally unique name, a type and cardinality. Optionally, the visibility
(public, private, protected) of an attribute can be specified by a graphical symbol.
Example: A class in UML consists of a unique name and encapsulates attributes and
methods. Attributes are displayed inside the middle part of a class symbol (cf. Figure
1). Class C has two attributes attrA1 and attrA2 with types A and B respectively.
The cardinality of the first attribute is set to ‘exactly one’ and the one of the second
attribute to ‘one or many’.

Figure 1: A UML class with two attributes

b) Relationships
Description: Binary relationships between static elements have to be represented.
Every relationship has a name and consists of two relationship ends. A relationship
end has a role qualifier and a cardinality qualifier. A role connects one static element
to the end of a relationship.

Task: Implement a model element representing a UML binary association with the
features given.
Example: An association in UML connects two classes (cf. Figure 2). Such an
association has a locally unique name and (if required) an association class –
representing properties of an association.

Figure 2: Association

c) Constraints between relationships
Description: Constraints between relationships address aspects such as whether a
relationship requires another (implication), excludes another (XOR) and similar
aspects. Possible constraints are listed below:

- AND: All relationships are required
- OR: one or more relationship might be established
- XOR: only one relationship might be established
- SUBSET: the set of instances of one relationship is a (true) subset of the set

of instances of the other relationship
- Implication: If relationship A is established also relationship has to be

established, too.
Task: Implement a diagram allowing the specification of constraints between
relationships. Consistency and plausibility check have to be provided, too.

C

B

A {XOR}

Figure 3: Example constraint

Example: An example for a constraint between two relationships is shown in Figure
3. An instance of type A has either a link to an instance of type B or type C. It has
never a link instance of both types.

d) Integrity constraints
Description: Diagram properties address integrity constraints on specific diagram
types.
Task: Implement a diagram type for modelling organisational charts. This diagram
type should contain organisational units and super/subunit-relationships. Checks for
forbidden relationships (i.e. cycles) have to be implemented, too.
Example: An organisational chart displays the static structure of an organisation (an
example is given in Figure 4). Organisational units are represented by rectangles and
lines from the bottom of a rectangle to the top of another rectangle. This construct
represents superunit-subunit-relationships between organisational units. A, for
example, is a superunit of A1 and A2. A21 and A22 are subunits of A2. But, A22
must never be a superunit of one of its direct or indirect (i.e. transitive) superunits.

A

A2A1

A22A21

Figure 4: Example Organisational Chart

Comparable Features: Checks for dedicated graph properties and/or types (like tree
or DAG))

e) Bipartite graphs
Description: A special kind of graph is a bipartite graph. A bipartite graph is a graph
with the following constraint: There are two types of nodes which appear alternating
in a diagram.
Task: Implement a diagram editor for Petri nets. The constraint of alternating nodes
has to be checked.
Example: Petri nets are bipartite graphs consisting of two types of nodes: places and
transitions. Every place is followed by none, one or several transitions and every
transition is followed by zero or more places. No place is followed by another place

as well as no transition has another transition as successor. A simple example of a
Petri net is given in Figure 5.

Figure 5: Example Petri net

f) Well-formed graphs
Description: A graph is said to be well-formed if there is a corresponding
synchronisation to every branch in the control flow and there is no path starting from
the branch which is not reaching the synchronisation.
Task: Implement a constraint checking mechanism which tests for well-formedness
on demand.
Example: In MEMO-OrgML every parallel branch results in a synchronisation (cf.
Figure 7).

2 Visualisation of nodes and relationships
Visualisation addresses the graphical representation of diagram elements. Usually,
the semantics of a model element is bound to a special graphical notation.

a) Geometrical figures
Description: Different types of nodes have to be displayed by different geometrical
symbols.
Task: List all geometrical figures available for the definition of nodes in diagram.
Demonstrate the construction of complex model elements using geometrical figures.
Example: ER-Diagrams use rectangles and diamonds; UML class diagrams have
nodes consisting of three composed rectangles -- one of them for each of a class’
aspect: general part (name, stereotype, …), attribute and operations.

b) Complex graphics
Description: Different types of nodes have to be displayed by complex symbols.
Task: Use scalable complex images (i.e. vector based images) for the representation
of nodes.
Example: MEMO-OrgML has different visual representations for processes and
events (cf. Figure 8 and Figure 7). MEMO-OrgML (MEMO Organisation Modelling
Language) is a language designed for modelling organisations. MEMO
(Multiperspective Enterprise Modelling) is a method for enterprise modelling.

c) Complex graphics at relationship ends
Description: Different types of arrows have to be displayed by complex symbols.
This may be different arrow types or other geometrical shapes like circles, rectangles,
ellipses or any combination of those.
Task: Demonstrate how to use a scalable graphics format for the representation of
relationships. Show that the size of a complex arrow type can be changed in order to
proportionally fit the size of the attached node element.
Example: MEMO-OrgML uses a special symbol for the representation of processes’
decomposition (cf. Figure 6).

<O2>

B
- 2 -

<O3>

C
- 3 -

<O1>

A
- 1 -

Figure 6: Example process decomposition (MEMO-OrgML)

d) Semantics by different routing of lines
Description: Different types of relationships should be displayed by using different
line routing in the diagram.
Task: Implement a simple process diagram with parallel and alternative control flow
as specified by the MEMO-OrgML.
Example: Control flow in the MEMO-OrgML process modelling language is displayed
using two types of edges. Parallel control flow is modelled using arrows consisting of
horizontal and vertical elements (cf. Figure 7). In contrast to this, an alternative is
annotated by straight lines (cf. Figure 8).

- 1 -
A

<O2>

B
- 2 -

- 4 -
D

<O1>

C
- 3 -

Figure 7: Parallel Execution of Processes B and C (MEMO-OrgML)

Figure 8: Alternative control flow after process E (MEMO-OrgML)

3 References

a) Links between a model element and another model
Description: Usually, a model element can be further specified by a different model.
Hence, a meta-modelling tool has to manage references between model elements in
a given model and other models.
Task: Demonstrate the mechanism for describing links between model elements and
other models given in your meta-modelling tool.
Example: In UML a class (represented in a class diagram) can be further specified
by a state chart. Or: A data store in a data flow diagram (DFD) can be specified by an
entity relationship diagram (ERD). Or: Tuples on places in a Predicate/Transition-Net
(a special kind of higher Petri nets) can be described by predicates.

b) Links between a part of a model element and another model
Description: Parts of model elements can sometimes be specified by a different
model. Hence, a meta-modelling tool has to manage references between model
elements’ parts in a given model and other models.

Task: Describe the mechanism for specifying links between a model element’s part
and other models given in your meta-modelling tool.
Example: In UML the operation of a class can be further specified by an interaction
diagram describing the behaviour of the operation.

c) External links
Description: Usually, model elements can be further specified by external

- documents
- applications.

Task: Name and explain mechanisms for the description of model elements and
external files and applications. Which of the following types are possible for external
sources:

- File
o Remote document
o Local document

- Application
o Web service
o Remote application
o Local application

Example: The documentation of a class can be kept in an external Word-document.
A symbol representing a component in UML might be associated with an executable
file. The DTD of a document might be associated with an external XML-document.
The operation of a UML class can be implemented by using a web service.

d) Decomposition of a model element
Description: Some model elements like business processes may be composed of
other business processes. To depict this composition a meta-modelling tool has to
link a diagram showing subprocesses of the superordinated process in a way that the
balance of incoming and outgoing flows is kept. In other words the target and source
of the control flows that go in and out of the superordinated model element remain
the same when used in a decomposition diagram of that element. Additional support
of hierarchical numbering of the model elements would be appreciated (see Figure
10).
Task: Demonstrate the mechanisms provided by the tool that support the creation of
balanced decompositions. Explain whether the mechanisms are preventive (i.e.
preventing the creation of unbalanced diagrams) or reactive (highlighting possible
inconsistencies after creation).
Example: A business process, e.g. Customer Support (see Figure 10), may be
composed of other business processes like General Support, Technical Support
among others (see Figure 10). Customer Support has an incoming as well as an
outgoing control flow to and from events. The control flows, there targets and goals
must be compatible to the ones used in any decomposition of the superordinated
process.

Figure 9: Example Process Customer Support (MEMO-OrgML)

Figure 10: Decomposition of Customer Support (MEMO-OrgML)

4 Further Aspects
In addition to the concepts described above, there are other concepts or specific
features, a tool vendor may want to point to. Examples include:

- dynamic aspects (i.e. Simulation)
- code generation
- re-engineering (e.g. construction of models basing on given code)
- report generation
- user interfaces
- integration with existing software
- version management
- extensibility

