
683

Abstract

The paper presents a methodology for designing office
procedure models in interaction with object models. The
proposed models of office procedures are conceptualized
in a way that helps to analyze the organizational effective-
ness of procedures. Furthermore the methodology supports
identification, specification, and refinement of classes in
the object model. Integration is accomplished by establish-
ing references from the office procedure models to the ob-
ject model and by specifying the management of a proce-
dure within classes of the object model. The specification
can be partially transformed into a frame-based object def-
inition language which in turn can be compiled into execut-
able code. The models are thought to be located within an
enterprise-wide repository. The methodology is supported
by a design environment that provides various levels of ab-
straction - not only for system designers but also for do-
main experts.

1: Introduction
In 1990 the project ’Computer Integrated Enterprise’

was launched at the German National Research Center for
Computer Science (GMD) in order to develop a framework
along with a tool environment to support the design of en-
terprise models. Such models should not only foster inte-
gration and reusability of software components that capture
a high degree of domain level semantics (as it is proposed
for instance in [21]) but also provide a medium that prom-
ises to reduce the well known communication barriers be-
tween the various perspectives on the enterprise and there-
by support business planning and organizational design
(like it is demanded in [5, 14, 23]).

An object-oriented approach was found to be best suited
for this purpose - for widely accepted reasons: Usually ob-
jects offer a more direct and natural correspondence to real
world entities than data structures. Inheritance and encap-
sulation promote reusability of concepts and components.
The various parts of a corporate-wide information system

can be integrated on a higher level: In order to communi-
cate they may refer to domain level classes instead of
(structured) data types. It is however not sufficient to mod-
el an enterprise by only focussing on objects or classes.
From a software engineering point of view it is desirable to
enhance an object model with dynamic constraints in order
to foster system integrity. Furthermore models of business
processes in general, of office procedures in particular pro-
vide a view on the enterprise that is essential for under-
standing the business and (re) designing organizational
structures. Finally we found that objects are not always the
preferred conceptualization for business professionals to
describe their perception of reality. Often they rather
choose a procedural view for understanding and explaining
a domain within the enterprise. For this reason it is more
promising to interview them about procedures - and use
such an interview as a vehicle to find relevant objects (and
their features respectively).

Although special approaches to design office procedure
systems (like [4, 15, 24]) were very helpful for our work,
none of them was completely satisfactory. While they aim
at providing convenient (that is on a high level of abstrac-
tion) means to define the formal constraints of office pro-
cedures in order to support a reliable implementation or al-
low for fast prototyping respectively (which is important
for enterprise modelling as well) they usually do not in-
clude the integration with an object model - if they are ob-
ject-oriented at all (for one exception see [10]). Further-
more they typically do not include means for organization-
al analysis or design. Approaches on the other hand which
suggest office procedure models in order to support organi-
zational analysis and design (like [12]) usually neglect the
requirements of system development. So it seemed to be
most promising to adapt one of the existing methodologies
for object-oriented design that include means for defining
dynamic models by introducing state transition diagrams
(like [1, 22]). However, for our purpose these techniques
have two shortcomings. They only describe the permissible
behavior (’life cycle’) of objects of one class. Within an of-
fice procedure however one typically deals with a variety
of different objects which interact in a particular context.

An Object-Oriented Methodology for Analyzing, Designing, and
Prototyping Office Procedures

Ulrich Frank

German National Research Center for Computer Science (GMD)
D-53757 Sankt Augustin, Germany. E-mail: ulrich.frank@gmd.de

Published in: Nunamaker, J.F.; Sprague, R.H. (Ed.): Proceedings
of the 27th Annual Hawaii International Conference on System
Sciences. IEEE Computer Society Press 1994, p. 663-672

684

Furthermore state transition diagrams do not provide a rep-
resentation that fits the average user´s perception of a busi-
ness procedure.

The methodology and design-environment that is de-
scribed in this paper is intended to integrate the various as-
pects of modelling office procedures. In particular it is to
provide a representation of office procedures that is illus-
trative for business people and takes into account the re-
quirements of object-oriented analysis and design at the
same time. It supports identification, specification and re-
finement of objects (classes) and provides means to ana-
lyze and refine the effectiveness of office procedures. Last
but not least it demonstrates how office procedure models
and an object model can be smoothly integrated within an
enterprise-wide repository. First I will give an overview of
the underlying object model. After that the proposed con-
ceptualization of office procedures is described in detail. In
the remaining section of the paper it is demonstrated how
to apply the methodology and a design environment that is
based on it.

2: The Object Model

While the benefits of object-oriented software develop-
ment are getting widely accepted there is no common un-
derstanding of how to define objects - neither on the speci-
fication or implementation level nor on the conceptual lev-
el, which is of outstanding importance for our point of
view. Among the still increasing number of object-oriented
design methodologies (in a survey we did last year we
found more than forty approaches) we felt most inspired by
the ones proposed by Booch [1] and Rumbaugh et al. [22].
Nevertheless none of the two was satisfactory for our pur-
pose. While Rumbaugh et al.’ methodology suffers from
being somewhat superficial and not consequently object-
oriented (for instance: attributes are defined by data types
and not by classes) Booch’s approach seems to be over-
loaded by details of various programming languages -
which, on our opinion, should not be part of a general meth-
odology for the design of conceptual models (for a compre-
hensive comparison of both methodologies see [9], for oth-
er comparisons see [11, 17]). When we decided to develop
yet another meta model for the design of object models we
wanted to take advantage of the benefits provided by all
three roots of object-oriented software development, name-
ly programming languages, data modelling, and Artificial
Intelligence. In particular we put special emphasis on re-
quirements like integrity, event-handling, business-rules,
and user-interface modelling.

2.1: Conceptualizing Objects

While from a (re-)using programmer´s point of view it

is sufficient to describe an object solely by the services it
provides analysis and design require a more detailed view.
Within an object model one defines classes and associa-
tions between classes or between objects respectively. Like
in most other methodologies the outstanding features of a
class are attributes and services. An attribute is regarded as
an object that is encapsulated within an object. We do not
allow attributes - like [3] - to only hold references to exter-
nal objects that have an existence of there own in the object
space. An attributes semantics is primarily defined by its
class. Furthermore a cardinality (using min-max notation)
may be assigned: A costumer may have no or many tele-
phone numbers, but he has exactly one date of birth. As-
signing a default value allows for generating appropriate
initialization operations. The authorization to access an at-
tribute can be separately described for get- and put-access
where each access type can be assigned one of three autho-
rization numbers: private (0), protected (1) or public (2). It
is not allowed to define write-permission to be greater than
read-permission. Each attribute is also characterized by a
history-flag. Setting it to true means that every update
should be recorded somehow.

In order to allow for generating prototypical user-inter-
faces it is possible to assign a default-view to each class. A
default view is either a widget or a collection of widgets.
One can also define a label that is to be presented with the
default view. Additionally features like size and font may
be specified. This approach is a first attempt to deal with
the complexity of user interaction. It cannot be completely
satisfactory: the way a value of a certain class is presented
to the user often is not unique but varies with the context of
interaction. For instance: you can display a name using a
scrollable text view, a listbox etc.

In order to specify a service the designer may describe a
list of input-parameters (which can be empty) where each
parameter is characterized by its class and its name. If a ser-
vice returns a result it has to be exactly one object. So it is
sufficient to define the class of this object. It is important to
note that such an object may be a composed object (like an
array, a container etc.) that contains many other objects. A
precondition in general specifies conditions "under which
a routine will function properly" ([16], p. 114). In our mod-
el it can be defined by referring to object or parameter
states. For instance: For a service that requires an object of
class ’Person’ as a parameter it may be necessary that the
attribute ’sex’ is in state ’male’. A postcondition has to be
fulfilled after the service has terminated. Similar to a pre-
condition it can be defined by referring to an object state or
to a state of the object that is returned by the service. Ac-
cess permission is specified by one of three authorization
levels (’public’, ’protected’, ’private’). Each service can be
assigned a set of exceptions (like media errors) which
should be named in a unified way for a whole object model.
Thereby exception handling can be defined for all involved

685

objects in the same way.
During the life time of an object there may be certain

events and rules which go beyond the scope of a single ser-
vice - otherwise they could be defined as pre- or postcondi-
tions. For this purpose we introduce triggers and guards. A
trigger can be generally defined as a tupel consisting of an
event and an action. The event is specified by a condition
that in turn is defined by referring to attribute states or
states of objects which are returned by a service. The action
is defined by the service that has to be executed when the
event occurs. To give an example for a trigger: Whenever
an object of class ’CostumerAccount’ has a balance less
than x, the object should execute a service that is suited to
notify somebody who is managing the account. A guard is
a condition that has to be fulfilled during the lifetime of any
object of a particular class (similar to what Meyer ([16], p.
124) calls "class invariant"). For instance: The value of at-
tribute ’retailPrice’ within objects of class ’Product’ should
never be lower than the value of attribute ’wholesalePrice’.

Every class may have exactly one superclass. Although
there is a number of arguments in favor of multiple inherit-
ance we restricted our model to single inheritance. We
found that in most cases single inheritance is satisfactory
while multiple inheritance increases the complexity of an
object model and thereby makes it more difficult to main-
tain it in a consistent way. In order to facilitate searching
for already defined classes as well as to support a system-
atic approach to find new classes, the classes are grouped
into categories. The definition of categories should be ori-
ented towards domain level concepts. Some of the catego-
ries we have chosen: accounting, car insurance, marketing,
people, documents, devices, associations. Every class as
well as any of its features can be annotated by a comment
which is of class ’Hypermedia’. This class is used to ex-
press that a comment can consist of anything like text,
sound, pictures, video etc. Furthermore it may include links
to other objects.

2.2: Associations

While generalization describes a relationship between
classes there are relationships or associations on the in-
stance level as well. Objects within an information system
are interrelated in various ways: they may use services
from other objects, they may be composed of other objects,
their existence may depend on other objects etc. Taking
such associations/relationships into account is crucial for
maintaining the integrity of an information system. There-
fore they are commonly regarded as an essential part of an
object model. There is however no consensus on how to de-
scribe them. Modelling associations as objects (as it is sug-
gested by [22]) allows to assign certain characteristics that
do not belong directly to one of the interrelated objects to
the association. For instance: If two objects of class ’Per-

son’ are connected by an association ’is married to’ then an
attribute like ’dateOfMarriage’ could be located in the as-
sociation object. After we first had adopted this approach
(see [8]) it became evident that the ’everything is an ob-
ject’-idea has its shortcomings. We found that one particu-
lar advantage of object-oriented design is to establish a cor-
respondence between real world entities and objects and
then describe associations between them. Giving up this
differentiation leads to conceptual confusion sometimes.

So we finally decided for modelling associations ac-
cording to Booch’s methodology. Booch ([1], pp. 88) dis-
tinguishes between only two types of associations: interac-
tion ("using") and aggregation ("is part of" or "contains").
Furthermore our model only allows for binary assocations.
Each class (which actually represents a number of its in-
stances) involved in an association has to be assigned a car-
dinality using min-max notation.

From a software engineering point of view aggregation
and interaction are sufficient. For a conceptual object mod-
el to be illustrative however it is desirable to allow for a
more detailed differentiation. For this reason each associa-
tion has to be assigned a domain level identifier. Such iden-
tifiers do not include any semantics they only improve
readability of the model and allow for enhanced retrieval
capabilities. For instance: If one is interested in a part of an
object model that represents organizational concepts, iden-
tifiers like ’supervises’ or ’is in charge of’ could be used to
filter the associations which are relevant for this purpose.
In order to express an associations direction its type and
each identifier can be supplemented by the inverse type
(i.e. ’is part of’ for ’contains’ et vice versa) or an inverse
identifier respectively. Fig. 1 gives an overview of the con-
cepts proposed for designing object models.

3: Modelling Office Procedures

A methodology for modelling office procedures should
allow for conveniently expressing temporal and control (in
other words: dynamic) aspects of structured tasks in the of-
fice. It should also help to avoid inconsistencies, like non
terminating cycles, subtasks which cannot be reached by
any chance, deadlocks, etc. As already mentioned above a
procedural view is of special relevance for analysis - for re-
fining the object model as well as for evaluating organiza-
tional effectiveness. Therefore we will first look at con-
cepts which have been introduced in order to support anal-
ysis.

3.1: Analysis and preliminary Design

In order to enhance object models with dynamic seman-
tics some object-oriented design methodologies (like [1,
13, 22]) include state transition diagrams. At first sight

686

such diagrams seem to be appropriate for modelling office
procedures, since they allow to describe events and corre-
sponding state changes. They are however restricted to
events and state transitions which may occur during the
lifetime of objects of one class. Therefore they are not sat-
isfactory for our purpose: Within an office procedure one
usually needs objects of more than one class. Peters and
Schultz [20] propose a modelling technique that allows to
include objects of more than one class. They use Petri nets
where each transition represents a state transition of an ob-
ject of a particular class. Different transitions within a net
may represent operations of objects of different classes.
Furthermore they allow - different from traditional con-
cepts (for an overview see [2]) - transitions to have an exe-
cution time larger than zero. Mapping transitions to opera-
tions of an object of a certain class is attractive from a soft-
ware-engineering point of view since it supports the idea of
building procedures by ’glueing’ objects together (as it is
proposed in [18]). Nevertheless such an approach has its
deficiencies, too. It is important for a model to allow for di-
rect correspondence to familiar conceptualizations of the
relevant domain. Office procedures are not necessarily
structured in a way that there is always only one object op-
erated on within a subtask. In addition to the operation of
an object Peters and Schultz suggest to assign resources to
a transition, like ’outgoing telephone line’ - which is to in-
dicate that these resources are needed for accomplishing
the task associated with a transition. Adding such a catego-
ry is certainly helpful for the purpose of organizational
analysis.

The approach we have chosen is similar to the one sug-
gested by Peters and Schultz in that we also use semantical-

ly enriched Petri nets and allow transitions to have an exe-
cution time larger than zero. Our methodology however al-
lows to explicitly assign objects of many different classes
to one transition and it provides categories to structure re-
sources. An office procedure is modelled as a directed
graph of activities (which are represented as transitions in
a Petri net). Each activity is triggered by a certain state of
all the relevant information and it produces one or more
new states. In order to describe IS-objects and other infor-
mation sources at the same time we use a special object that
we call a ’virtual procedure document’. It contains refer-
ences to all the objects needed within a procedure. These
objects are either IS-objects or external objects. An IS-ob-
ject is an instance of a class specified in the object model.
Its state resides in the corresponding computer system (for
instance in an object-oriented database management sys-
tem). External objects reside outside the computer system.
They are typically - but not necessarily - paper based. In or-
der to include them in the model we use reference objects.
They provide a description of relevant features of external
objects - like attributes/fields or certain states. For instance:
A form may contain fields like ’name’, ’dateOfBirth’ etc.
and it may have states like ’complete’, ’incomplete’, ’con-
sistent’, etc. Furthermore a reference object can hold infor-
mation about the physical location of an external object, its
costs, availability etc. Whenever the objects a procedure
document contains reach a relevant state (which is either
monitored by the procedure document itself or - in the case
of external objects - indicated by the user) it triggers an ac-
tivity.

An activity is modelled by assigning the needed and
produced information, its organizational context, the re-

Information&Communication

Objects, Services, Forms, Fields, Files,
Locations, Communication, Partners,
Channels

Organizational Context

Department, Team, Position

Control

Decision rules, Exceptions,
Durations

States

of Objects, Forms and Files

State of the procedure document

Activity
Figure 1. Conceptualization of an office procedure

687

quired (human) communication, control, exceptions, and
execution time. Information that is located in IS-objects is
referred to by the services which are needed. For each ser-
vice that requires input parameters it can be specified
where the input stems from (other objects, the user himself,
or the user via communication with others). External ob-
jects are divided into two categories: forms and files.
Forms have a formal structure, that is they contain fields,
have well defined states, and a set of constraints defines the
permissible operations. Their content may be changed
within an activity. The term file is used to summarize doc-
umented information that is read-only - like office files, let-
ters or journals. The organizational context of an activity is
defined by assigning an organizational unit (like a depart-
ment) and a position (like a clerk) which should both be
represented in the object model. Communication is de-
scribed by sources, communication channels, condition
and purpose. Source is either a person, represented by a po-
sition, or an organizational unit. Communication channel is
specified by picking items from a list that contains ’face to
face’, ’telephone’, ’telefax’, etc.

If the communication does not have to occur a condition
can be defined in a semi-formal way. The purpose of the
communication can either be characterized as input for an
information object (internal or external) or for a decision.
Control should be expressed in a semi-formal way by using
declarative rules, referring to objects, object states and ser-
vices. Exceptions should be named in a unified way. Ex-
ception handling can be modelled by describing the action
that should be taken - again in a semi-formal way. Execu-
tion time can be assigned in three different extensions: es-
timated time, minimum time and maximum time.

In order to allow for different levels of abstraction each
activity can be modelled as a procedure itself. The informa-
tion represented by the model supports analysis in various
ways. Asking for the required objects and their services re-
spectively helps to complete and refine the object model.
By relating required information to sources and communi-
cation channels it is possible to analyze the model for me-
dia frictions (like a person’s age has to be transferred from
an object within the information system to a paper-form),
which may give hints for improving the procedure’s orga-
nization. The communication with roles and organizations
allows to generate a communication net - for a particular
activity as well as for the whole procedure. Such a net can
then be used to find communication patterns and thereby
deliver hints for improving organizational effectiveness.
The times assigned to each activity allow to calculate worst
case, best case and average throughput - which could be
implemented as a simulation. Furthermore the execution
time of an activity could be varied by changing its capacity,
which could be expressed either by assigning other execu-
tion times or adding parallel activities. Usually there is
more than one type of office procedure within an enter-

prise. Procedures of different types may be interdependent
by requiring each others results directly or competing for
resources. Models of all procedure types together with fig-
ures about the expected workload and the available re-
sources offer the chance for an enterprise-wide optimiza-
tion of office procedures or at least allow to reveal chances
for a more economic allocation of resources.

3.2: Prototyping and Implementation

Analysis and organizational design do not only result in
an elaborate description of requirements but in a prelimi-
nary design. The dynamic structure of the relevant office
procedures is described by Petri nets. Furthermore it should
have been decided to what extent the information used in a
procedure is to be represented in the object model. So far
we have however abstracted from issues directly related to
the implementation of an office procedure. For this purpose
it is crucial to decide where to locate the knowledge neces-
sary to manage a procedure. One important question in this
respect: How should activities be represented/implemented
within an object-oriented system? Additionally there is
more generic knowledge to be taken into account. It can be
divided into the following categories:
• General constraints

For instance: A procedure must not contain deadlocks.
There must not be endless loops. There should be no activ-
ity that cannot be reached by any chance.
• Dispatching

For instance: After an activity block´s postcondition is
fulfilled its successor has to be triggered, after an activity
has been started, an employee who can take over the asso-
ciated role has to be informed. It may be important to first
check an employee’s queue of activities before dispatching
a new activity to him. Dispatching has to be done according
to organizational rules, like: only one employee may be re-
sponsible for the whole procedure or for a collection of ac-
tivities.
• Exceptions

For instance: Within an activity block an inconsistent
document state is detected that had been caused in a pre-
ceding activity. An employee becomes sick before com-
pleting the activity.

While general constraints should be checked already
during the design process (preferable by an appropriate
tool, see 4.), dispatching and exception handling can only
be applied when the procedure is active. For this purpose
we use a object that we call a procedure manager for each
procedure type. It is initialized with the Petri net that con-
tains the pre- and postconditions for each activity. Since
more than one instance of a procedure type may be active
the procedure manager allocates and distributes the re-
sources needed within the activities. It also provides an in-

688

terface to an active procedure. For instance: It contains ser-
vices that list all its active procedures and that allow to in-
vestigate those procedures’ states. A procedure manager
registers with the procedure supervisor, an object that is re-
sponsible for allocating and distributing resources request-
ed by different procedure managers. It provides services
that allow to browse through all active procedures of an en-
terprise (or department) and to investigate them by request-
ing the required services from the appropriate procedure
manager. An activity itself is represented by a service of the
procedure document that is defined for each procedure
type. Its precondition has to correspond to one of its prede-
cessor’s postconditions. Its postconditions are combined
with a trigger that is to notify the procedure manager. Any
exception that occurs during the operation that implements
the service is active causes a notification of the procedure
manager as well. The operation itself uses other services of
the procedure document and of other objects that have been
assigned to the activity.

While there is no doubt that the proposed architecture
can be implemented somehow it is desirable to take advan-
tage of reusable artifacts as much as possible. At the begin-
ning of the project we were committed to the vision already
mentioned above: composing an office procedure solely
from pre-existing classes. We had to give up this vision
soon - which is not surprising after all: It is an essential fea-
ture of an office procedure (in other words: a long transac-
tion) that a single activity or transition cannot be treated in-
dependently from other activities. Nevertheless an object-
oriented approach offers starting points for reusability
through specialization and variety. Designing a new type of
office procedure goes along with specifying corresponding
classes for the procedure document and the procedure man-

ager. Three general classes are pre-specified and imple-
mented: ’ProcedureSupervisor’, ’ProcedureManager’, and
’ProcedureDocument’. They are specified according to the
meta-model described above. Among others they provide
services to check a procedure’s state, to support exception
handling and to arrange for dispatching. Corresponding ob-
jects for a specific domain or procedure type can be defined
by specializing from those general classes. With an increas-
ing number of existing classes it becomes more likely to
find a class that is very similar to the one actually needed.
Reusability is additionally fostered by the fact that the op-
erations required within an activity intensively use services
provided by classes defined in the object model.

In order to provide the model with prototyping capabil-
ities it is necessary to enhance it with information about a
suitable user-interface. This information can be deducted
from those services of objects assigned to an activity which
are needed for user-interaction. The widgets needed to in-
teract with the services can be looked up in the object mod-
el: input and output parameter of any service should be
specified by a class. Since every suitable class in the object
model should have a default view assigned to it, a prototyp-
ical user-interface for an activity can be generated. It may
look somewhat awkward if there is no additional informa-
tion on how to arrange the widgets. But by providing an in-
teractive interface-designer the user of the prototype could
rearrange the widgets (see 4:).

As already outlined above the procedure models are in-
tegrated with the object model in two ways. First they refer
to the objects they use, second the management of an office
procedure is done by objects that are specified within the
object model themselves. Fig. 2 shows how an object mod-
el and office procedure models could be represented within

ProcedureSupervisor

RiskEvaluation-

ProcedureManager

ClaimsProcessing-

Manager

Employee

Clerk

Object Model
Repository

uses

controls

Figure 2. Integration of object model and office procedure models within an enterprise-wiede repository

InsuranceSupervisor

Office Procedure Models

689

an enterprise-wide repository.
In order to allow for a smooth transition from the object

model and the procedure models to an implementation an
appropriate runtime system is required. Furthermore it is
necessary to provide a suitable language that can be used to
code those parts of the specification which are not covered
by the conceptual model. The most preferable solution
would be to use an object-oriented database management
system (OODBMS) - or, more appropriate on my opinion:
an object management system - where the repository would
serve as the schema for the OODBMS. However, working
with Smalltalk (see below) we were not satisfied with most
OODBMS we evaluated two years ago. The languages they
use for schema definition did not provide the constructs
which would have allowed to conveniently map from our
object model to the schema. Smalltalk itself does not di-
rectly support important aspects of the object model: there
is no strong typing, in general constraints cannot be imple-
mented in a convenient way. Therefore we use a frame-ori-
ented object definition language that is part of the Smalltalk
Framekit (SFK), which has been developed by two col-
leagues at GMD [6]. The conceptual description of a class
can partially be transformed in SFK´s object definition lan-
guage (primarily attributes together with their associated
access services). SFK enhances Smalltalk with strong typ-
ing. Various types of constraints can be defined as well.
Compiling a class goes along with generating code for im-
plementing demons which act as guards and triggers. An
example of SFK-code generated from the object model is
given in [7].

4: A Design Environment to support the
Methodology

Designing enterprise models according to the proposed
methodology can hardly be accomplished without appro-
priate tools: A complex model requires support for brows-
ing and searching. Because of multiple integrity constraints
maintenance that is solely done manually jeopardizes a
model’s consistency to an unacceptable extent. Finally it is
impossible to do without tools when prototyping is to be
accomplished. For these reasons we developed an environ-
ment that supports analysis, design and maintenance. It was
implemented using Smalltalk-80 within the Objectworks®
4.0 environment on Sun4-workstations. High productivity
could be achieved by using additional class libraries (see
[7] for more details).

The environment consists of two main tools: The Object
Model Designer (OMD) supports the specification of class-
es. It provides various features to search for certain ele-
ments of an object model and to browse through the model.
The Office Procedure Designer (OPD) allows for conve-
niently designing office procedures. It provides functions

for simulation, fast prototyping and organizational analy-
sis. Both tools are tightly integrated. The integration on the
conceptual level has already been characterized. System in-
tegration is accomplished by locating both tools within one
Smalltalk image. It is important to note that both object
model and office procedure models are analyzed and de-
signed concurrently: Specifying an office procedure re-
quires to establish references to the object model and may
also give hints to enhance or refine the object model.

To demonstrate how to use the environment in a more il-
lustrative way we look at a little example: a claim process-
ing procedure within an insurance company. We begin with
designing the object model using the OMD. The OMD pro-
vides different levels of abstraction. On the highest level
one starts with inserting class names which have to be
grouped into categories. For instance: ’Employee’, ’Man-
ager’, ’Lawyer’, ’Person’, ’InsuredPerson’, etc. could be
assigned to the category ’People’. One superclass can be
assigned to each class. According to the meta model a class
can be characterized by features like attributes, services,
triggers, and guards. First only their names are added to
listboxes. The top left window in fig. 4 shows how a class
is described on this level of abstraction. In order to specify
a single feature in a more detailed way, the user has to se-
lect it within the listbox. This will cause the corresponding
window to pop to the front. In fig. 4 this is the window that
contains the template for specifying an attribute. The exam-
ple shows the attribute ’dateOfBirth’. Its class is ’Date’. In
order to foster reusability the services which are provided
by this class are shown in a listbox. If one of these services
is needed for the class that is currently selected (which is
’InsuredPerson’ in our example) it can be pasted to the ser-
vices-listbox of this class. The OMD will then establish a
reference to this service.

After a few classes have been specified the OMD allows
to generate graphical representations of the object model.
The generalization hierarchy can be generated for the
whole model. It turned out however that such a hierarchy
of models with more than only a few classes does not fit
into a window anymore - even if it is expanded to cover the
whole screen. Therefore it is possible to alternatively gen-
erate a partial hierarchy. Each node of this hierarchy may
be expanded (its subclasses may be added) dynamically.
Furthermore the associations of a class on the object level
can be presented in another window (see bottom right win-
dow in fig. 3).

In order to foster system integrity it is not possible to
type in a class name directly to characterize an attribute, a
superclass, or a parameter. Instead it is required that the
dictionary that contains all class names is updated first.
Then the name can be pasted to the corresponding field.
The OMD controls a number of integrity constrains. It pre-
vents the user from deleting elements which are referenced
by other elements, from assigning superclasses or classes

690

of attributes in an inconsistent way (for instance: it is not al-
lowed to assign a superclass that is already a subclass), etc.

The state of a class description in the OMD can be char-
acterized by one of three different values: ’incomplete’,
’complete’ and ’implemented’. As soon as the state is de-
fined as complete by the user the specification is compiled
- as far as possible - into SFK-code. Since the services’ se-
mantics is not completely formalized in the model only the
code for type checking of parameters and for checking pre-
and postconditions can be generated. After the user has
completed the implementation of all the services of a class
the state ’implemented’ can be assigned. That means that
objects can be instantiated from this class.

In parallel to - and in interaction with - developing the
object model the model of the claim processing procedure
is designed using the OPD. At the beginning - on the high-
est level of abstraction - the whole procedure is drawn us-
ing a specialized graphical editor. For this purpose the user
is provided with illustrative icons which represent states of
the procedure document and different types of activities.
Before an operation to modify the net is committed the
OPD checks if it is consistent. When the procedure is de-
scribed on this level (see fig. 4), the user can ’zoom’ into it
by selecting an icon - either an activity or a document state.
Within the example shown in fig. 4 the activity ’Verifica-
tion of substantial matter’ is selected. Within the window

titled ’Activity’ it can be characterized by assigning execu-
tion times, an organizational unit, an organizational posi-
tion, and possible exceptions. Furthermore the classes (like
’InsuredPerson’, ’Policy’, etc.), forms, and files which are
needed as well as the involved persons can be listed in this
window.

In order to be more specific about an item it can be se-
lected which will then cause a window with an appropriate
template to pop to the front. Within the example shown in
fig. 4 this is the window in top right position. It allows to
pick the required services from the selected class. For each
service - or the object it delivers respectively - it can be
specified what it is needed for: either for a form or for com-
municating with an involved person. The example shows
that the service ’profession’ is needed for the ’Application-
Form’ as well as for communicating with the ’InsuredPer-
son’ and the ’Expert’.

Other templates exist to specify the relevant information
within forms (fields and what they are needed for) or files
(where are they physically located, what is the subject of
interest within the file) and as well as the communication
with involved persons (channel, subject). These specifica-
tions are used to generate a protocol which is shown in the
right bottom corner of the ’Activity’ window in fig. 4. An-
other text-widget within this window presents a template
that can be filled to describe decision rules relevant for the

Figure 3. User-interface of the Object Model Designer

691

focussed activity. A selected document state is specified in
a similar way. First the classes, forms, and files which are
involved in this state are assigned to it. After that these
items have to be characterized in a more detailed way. The
state an object (which is represented by the name of its
class) has to be in, is defined by naming a boolean service
that checks this state. That requires to enhance the class
with this service by switching to the OMD. For instance:
An object of class ’Policy’ is required to be in state ’valid’.
That requires a service like ’isValid’ to be specified for this
class. For every form it has to be defined which fields have
to be filled in. A file is characterized by its physical loca-
tion and optionally the means of transportation to get it to
the clerk. In order to support the user and to avoid inconsis-
tencies the classes, forms and files assigned to a document
state are pasted to the activity that is triggered by this state.

The OPD can generate a prototypical user-interface for
every activity - provided the default views have been as-
signed to the corresponding classes in the object model (see
above). The widgets placed within such an interface may
be rearranged interactively. In order to use the simulation
features built into the OPD it is necessary to first assign
probabilities (using percentage values) to the states pro-
duced by every activity. Furthermore it is required to type
in the workload as number of procedures in a time period.
After that the simulation can be started. It can be done in a
various speeds. Animation is accomplished by dynamically

marking the activities which are active during a certain
time period. If the simulation reveals any chances to im-
prove the organization of the procedure the net can be rear-
ranged interactively.

The evaluation of a procedure’s organization is further
supported by a function that generates a report on detected
media frictions as well as by another function that draws
the specified communication relationships as a star where
the clerk who is in charge of the activity is positioned in the
center.

Both the OMD and the OPD allow to annotate most of
their models’ features with hypertext-comments. Further-
more they provide various retrieval capabilities. For in-
stance: Searching for all the classes which are referenced
within a certain class, searching for all the classes which
are referenced within a certain office procedure, etc. The
hypertext-annotations are completely inverted so that an-
notations which contain logical combinations of (truncat-
ed) strings can be retrieved within an negligible amount of
time.

5: Conclusions

Different from general methodologies to design object-
oriented information system the proposed methodology
does not only allow to define object models on a high level

Figure 4. User-interface of the Office Procedure Designer

692

of semantics. Furthermore it supports the analysis and de-
sign of office procedure systems which are closely integrat-
ed with an object model. Both object model and office pro-
cedure models represent static as well as dynamic con-
straints of a firm’s information system. They can be located
in a central repository in order to allow for a high degree of
integration an reusability. The environment is thought to be
a tool for system designers. The experience we gathered so
far indicates however that it also provides levels of abstrac-
tion which are suited to facilitate discussions with domain
experts who are computer illiterate.

The frame-based object definition language we use on
the implementation level provides powerful concepts. It is
however not satisfactory in the long run: Distribution is an
essential feature of office procedure systems. Although we
have successfully experimented with a server/client-archi-
tecture using Smalltalk’s C-interface and Sun’s RPC-li-
brary it is definitely more desirable to generate a schema
(or part of it) for a distributed OODBMS. We currently
work on such an interface for ONTOS, an OODBMS we
have been using within other projects for a few years. In the
long run however it will not be sufficient to connect to one
particular system. Therefore we are watching the few
emerging standards for object models. So far we have spec-
ified how to map our object model to the one suggested by
the Object Management Group [19] - which unfortunately
is accompanied by a loss of semantics.

References

[1] Booch, G.: Object-oriented Design with Applications. Ben-
jamin Cummings, Redwood 1991

[2] Brauer, W.; Reisig, W.; Rozenberg, G. (Eds.): Petri Nets:
Central Models and Their Properties. Springer, Berlin,
Heidelberg etc. 1987

[3] Coad, P.; Yourdon, E.: Object Oriented Design. Prentice
Hall, Englewood Cliffs, NJ 1991

[4] Croft, W.B.: Representing Office Work with Goals and Con-
straints. In: Lochovsky, F. (Hg.): Proceedings of the IFIP
WG 8.4 Workshop on Office Knowledge: Representation,
Management and Utilization. Toronto 1987, p. 13-18

[5] ESPRIT Consortium AMICE: CIM-OSA AD 1.0 Architec-
ture Description. Brussels 1991

[6] Fischer, D.H.; Rostek, L.: Consistency Rules and Triggers
for Thesauri. In: International Classification, Vol. 18, No. 4,
1991, p. 212-225

[7] Frank, U.; Klein, S.: Three integrated tools for designing and
prototyping object-oriented enterprise models. GMD-Re-
search Report, no. 689, Sankt Augustin 1992

[8] Frank, U.: Designing Procedures within an object-oriented
Enterprise Model. In: Sol. H. (Ed.): Proceedings of the Third
International Working Conference on Dynamic Modelling of
Information Systems. Delft 1992, p. 365-387

[9] Frank, U.: A Comparison of two outstanding Methodologies
for object-oriented Design. GMD-Research Report, no.
779,, Sankt Augustin 1993

[10] Hogg, J.: OTM: A Language for Representing Concurrent
Office Tasks. In: Lochovsky, F. (Hg.): Proceedings of the
IFIP WG 8.4 Workshop on Office Knowledge: Representa-
tion, Management and Utilization. Toronto 1987, p. 10-12

[11] Hong, S.; Goor, G.: A Formal Approach to the Comparison
of Object-Oriented Analysis and Design Methodologies. In:
Nunamaker, J.F.; Sprague, R.H. (Hg.): Information Systems:
Collaboration Technology, Organizational Systems, and
Technolgoy. Proceedings of the 26th International Hawaii
International Conferenc on System Sciences. IEEE Comput-
er Society Press, Los Alamitos 1993, p. 689-698

[12] Humphreys, P.; Berkeley, D.; Queck, F.: Dynamic Process
Modelling for Organizational Systems supported by SA-
SOS. In: Sol, H. (Hg.): Proceedings of the Third Internation-
al Working Conference on Dynamic Modelling of Informa-
tion Systems. Delft 1992, p. 1-36

[13] Kappel, G.; Schrefl, M.: Using an Object-Oriented Diagram
Technique for the Design of Information Systems. In: Sol,
H.G.; Van Hee, K.M. (Hg.): Dynamic Modelling of Informa-
tion Systems. North-Holland, Amsterdam, New York etc.
1991, p. 121-164

[14] Katz, R.L.: Business/enterprise modelling. In: IBM Systems
Journal, Vol. 29, No. 4, 1990, p. 509-525

[15] Kreifelts, T.; Woetzel, G.: Distribution and Error Handling
in an Office Procedure System. In: Bracchi, G.; Tsichritzis,
D. (Hg.): Office Systems: Methods and Tools. Proceedings of
the IFIP TC 8 WG 8.4 1986. North-Holland, Amsterdam,
New York etc. 1987, p. 197-208

[16] Meyer, B.: Object-Oriented Software Construction. Prentice
Hall, Englewood Cliffs/NJ 1988

[17] Monarchi, D.E.; Puhr, G.: A Research Typology for Object-
Oriented Analysis and Design. In: Communications of the
ACM, Vol. 35, No. 9, 1992, p. 35-47

[18] Nierstrasz, O.; Dami, L.; De Mey, V.; Stadelmann, M.;
Tsichritzis, D.; Vitek, J.: Visual Scripting: Towards Interac-
tive Construction of Object-Oriented Applications. In:
Tsichritzis, D. C. (Ed.): Object Management. Geneva 1990,
p. 315-331

[19] Object Management Group/Object Model Task Force: OMG
Architecture Guide 4. The OMG Object Model. Draft July,
Framingham/Mass. 1992

[20] Peters, L.; Schultz, R.: The Application of Petri-Nets in Ob-
ject-Oriented Enterprise Simulations. In: Nunamaker, J.F.;
Sprague, R.H. (Eds.): Information Systems: Collaboration
Technology, Organizational Systems, and Technolgoy. Pro-
ceedings of the 26th International Hawaii International
Conferenc on System Sciences. IEEE Computer Society
Press, Los Alamitos 1993, p. 390-398

[21] Pröfrock, A.-K.; Tsichritzis, D.; Müller, G.; Ader, M.: ITH-
ACA: an Integrated Toolkit for Highly Advanced Computer
Applications. In: D. C. Tsichritzis (Hg.): Object Oriented
Development. Genf 1989, p. 321-344

[22] Rumbaugh et.al.: Object-oriented Modelling and Design.
Prentice Hall, Englewood Cliffs/NJ 1991

[23] Sowa, J.F.; Zachman, J.A.: Extending and formalizing the
framework for information systems architecture. In: IBM
Systems Journal, Vol. 31, No. 3, 1992, p. 590-616

[24] Tsichritzis, D.: Form Management. In: Communications of
the ACM, Vol.25, No.7, July, 1982, p. 453-478

