

A Requirements Based Approach for Automating Enterprise IT Architecture Modeling Using Multiple Data Sources

Margus Välja, Robert Lagerström, Mathias Ekstedt, Matus Korman **ModTools15**

Outline

- Motivation
- Methodology
- Requirements and Approach
- Study
- Discussion

Motivation

Too **complex environments** to create models manually (hundreds of devices which each have tens of instances of software)

If we would succeed,

Timeliness and **scalability** still problematic

Motivation

Too much heterogeneous data and difficult to make sense of it

Motivation: Model

Collected	Known	In progress
Application protocols	Known vulnerabilities in existing software	Configuration methods used for web applications and similar
Computer and network hardware with addresses	Patch levels of clients, servers and software products	IT management processes' characteristics like for example for zone management process
Network zones	Access control points and password authentication mechanisms	Social aspects like social zone, disecurity awareness program, and developer training
Software (also firmware) including system software and operating systems	Data flows	Software architecture and software assurance methods like static code analysis
User accounts		Types of security controls present like cryptography methods and port security

Motivation: Data sources

Type of tool	Examples	Type of data	Data acquiring method
Active scanners	Vulnerability scanners, network scanners	Hardware devices, software, vulnerabilities	Scanning network, computer nodes and application servers
Passive scanners	Vulnerability scanners, network scanners, packet analyzers	Hardware devices, software, vulnerabilities, network communication	Listening to existing network traffic
Enterprise architecture management	Business, information, IT architecture	Models of organization and its IT (in different views)	Manual input, scanning
System management	Change, release, license management, directory services	TO-BE to AS-IS elements	Manual input, scanning
Security monitors	•	System, network, process state information	Scanning, listening, registering security events

Methodology: Earlier work

- Model to model transformation standards Extensible Stylesheet Language Transformations (XSLT), Query/View/Transformation (QVT) etc.
- Attempts to create EA models (Archimate, CySeMoL)
- Business process modelling

Methodology

- Requirements
 - EA model maintenance
 - Enterprise information credibility
 - Data cleaning (DW)
- IT operational model
 - EAAT & CySeMoL
 - XSLT

Approach: Architectural requirements

- 1. Data collection process needs to be supported by tools to limit manual inspection.
- 2. Data collection process needs to be extensible to cover additional sources easily.

Approach: Integration requirements

- 3. The system needs to be able to detect changes in real world enterprise architectures.
- 4. The system needs to provide a mechanism to define mapping from incoming data to the internal data structure.
- 5. The system needs to have a machine understandable internal structure.

Approach: Data quality requirements

- 6. The system needs to provide mechanisms to ensure data quality that is sufficient for the modeling goals including the classification of data sources
- 7. The data needs to be of appropriate granularity, consistency, completeness and actuality (time), all of which must be measurable.
- 8. The system needs to allow for the automated propagation of changes.
- 9. The system needs to be able to identify and resolve data identity conflicts from different sources via reconciliation.

Approach: Data quality requirements

- 10. As more sources agree an answer, the credibility of that answer should be monotonically non-decreasing.
- 11. The data source must be known.
- 12. The data source's historical credibility must be known.

Approach: human-machine approach

One source	Multiple sources	Description
Data acquisition	Data acquisition	Collecting data for a model
	Data analysis	
	Decision and action selection	
	Action Implementation	
Data analysis	Data analysis	Model based analysis
Decision and	Decision and action	
action selection	selection	Model based action selection
Action		
Implementation	Action Implementation	Real life consequences

Approach: High level view

Approach: Concerns: Data acquisition

	Concern	Process step	Automation
1	What data are needed for modeling?	Define data needs based on the metamodel as a common data structure	No
2	Where do the data come from?	Define data sources	No
3	What kind of tools and machine understandable structure should be used?	Decide tools and machine understandable format	No
4	Which data sources can be trusted and to what extent?	Define credibility calculation rules	Partial
5	How are the data acquired?	Create adapters to common data structure	Yes

Approach: Concerns: Data analysis

	Concern	Process step	Automation
6	Are there any data quality problems and can these be solved?	Identify common data quality problems and define known techniques to solve them (data cleaning workflow and mapping rules)	Yes
7		Identify missing data and define rules for deriving missing data	Partial
8	Are there any patterns that can be reused to improve future models?	Define patterns and reuse them	Yes
9	How can the processed data be transformed into a model?	Apply a transformation method	Yes

Empirical study

- SCADA lab
 - 5 servers
 - 2 Red Hat Systems
 - 3 Windows
- Security analysis
 - EAAT and CySeMoL
 - Automatic model generation

Empirical study: Addressing concerns

- Data sources Nexpose and Wireshark
- Nexpose prioritized over Wireshark
- Data exported to XML format and abstracted to right level with adapters

Empirical study: Addressing concerns

- Common data structure represents CySeMoL ontology, data quality attributes
- Unique identifiers chosen like IP address to merge data
- Outside dictionaries needed to complement data
- Some data needs to be omitted from the model
- EAAT transformation through XLST

Results

Calculable model with more than 10000 elements
Process can be repeated with new data in minutes

Results: Model

Limitations

- Implementation specific details missing
- Only certain type of models supported
- Manual implementation work

Conclusion

- Model creation with multiple sources automated
- 9 Concerns need to be addressed

Questions

